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In order to investigate the inventory optimization of circulation enterprises, demand analysis was carried out firstly considering
supply-demand balance. Then, it was assumed that the demand process complied with mutually independent compound Poisson
process. Based on this assumption, an optimization model for inventory control of circulation enterprises was established with
the goal of minimizing the average total costs in unit time of inventory system. In addition, the optimal computing algorithm for
inventory costs was presented.Meanwhile, taking the agricultural enterprises in Aksu, Xinjiang, China, for example, the researchers
conducted numerical simulation and sensitivity analysis. Through constantly adjusting and modifying the parameters values in
model, the optimal stock and the optimal inventory costs were obtained.Therein, the numerical results showed that the uncertainty
of lead time greatly influenced the optimal inventory strategy. Besides, it was demonstrated that the research results provided a
valuable reference for the agricultural enterprises in terms of optimal management for inventory system.

1. Introduction

Warehousing is an important part of logistics system. Inven-
tory control of warehousing has been widely focused on by
circulation enterprises and relevant scholars all the time.
If the stock is high, smooth business process can be fully
guaranteed to improve service level and customer satisfac-
tion, while if the stock is low, capital backlog of enterprises
and the corresponding management costs are able to be
reduced (as in [1]), to optimize and control stock matters
to the service quality and economic benefits of circulation
enterprises. In addition, the sustainable development of cir-
culation enterprises is crucial.

Owing to the significance of inventory optimization and
control in circulation enterprises, there are many relevant
scholars that begin to pay attention to this. In the last
two decades, the issue has attracted much attention from
many researchers. Among these researches, economic order
quantity (EOQ) model based on stock-dependent demand
was established (as in [2]). Besides, the production-inventory

model for perishable items with definite productivity and
with demand linearly depending on inventory level was con-
sidered (as in [3]). Some scholars explored the inventory issue
with allowable shortages under inventory-level-dependent
demand; at the same time, they also took monetary value as
well as the expansion rate caused by external and internal
costs into consideration (as in [4]). In addition, EOQ model
for perishable items was established, where the perishable
items were under the following conditions: the demand rate
was related to inventory level and some stock-outs could be
supplemented later (as in [5]). Cárdenas-Barrón et al. (as
in [6]) studied the optimal solution of multiproduct EOQ
model. Moreover, the optimal replenishment strategy for
perishable items was investigated aiming at maximizing
profits (as in [7]), while the inventory optimization for
perishable items under stock-dependent demandwas studied
as well (as in [8]). Wang et al. (as in [9]) discussed the inven-
tory control model for fresh agricultural products onWeibull
distribution under the assumption that the inflation rate is
higher than the natural decay rate. Paul and Rajendran (as
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in [10]) studied the problem of rationing mechanisms and
inventory control-policy parameters for a divergent supply
chain operating with lost sales and costs of review. Krish-
namoorthy andNarayanan (as in [11]) considered the stability
and performance analysis of a production-inventory system.
Yadavalli et al. (as in [12]) studied the problem of updating
service facilities for inventory system to achieve production
and service synchronization. From the inventory cost and
the cost of order to determine the optimal order point and
quantity, Doğru et al. (as in [13]) pointed out enterprises
adjust inventory quantity through a large number of buffer
stocks and there is a serious bullwhip effect. Hua et al. (as in
[14]) studied the carbon emissions in inventorymanagement.
The corresponding model is established by the joint of
replenishment strategy, and through genetic algorithm, Zhou
et al. (as in [15]) gave the solution and simulation of the
model. Murray et al. (as in [16]) studied the multiproduct
pricing and inventory issues. Choi and Ruszczyński (as in
[17]) established a multiproduct risk-averse newsvendor, and
they pointed out that the increase of risk aversion does
not necessarily lead to the reduction of the order quantity.
Schrijver et al. (as in [18]) studied the optimization model
and algorithm of multiproduct demand inventory network
design for stochastic demand and inventory decision. Based
on the theory of nonlinear integer programming, Yang et al.
(as in [19]) studied the integrated multiproduct optimization
model. Liu et al. (as in [20]) studied the flexible service
policies for a Markov inventory system with two demand
classes. Zhao and Lian (as in [21]) studied the priority
service rule of a queueing-inventory system with two classes
of customers. Karimi-Nasab and Konstantaras (as in [22])
studied an inventory control model with stochastic review
interval and special sale offer. By determining the level of
customer’s anchoring effect, Liu and Shum (as in [23]) studied
the joint control of pricing and inventory allocation in two
periods of retailers based on constructing the customer’s
disappointment aversion utility function.Mo et al. (as in [24])
researched the inventory issue for the perishable multi-items
with just-in-time (JIT) inventory-level-dependent demand.
Ji and Jin (as in [25]) established an inventory optimization
model meeting the restrained conditions of being control-
lable in lead time and service level. Li (as in [26]) studied the
control and optimization model for multiechelon inventory
in supply chain, while the optimization method for two-
echelon inventory system based on stochastic lead time was
researched by Dai et al. (as in [27]). Zhao (as in [28]) pre-
sented an optimization study on multiechelon inventory in
supply chain on the basis of time competition, while Wang
(as in [29]) studied the optimization model for production-
inventory under uncertain environments. Fu and Pan (as
in [30]) mainly explored disposing the inventory manage-
ment problem by using fuzzy theory under uncertainty to
derive the fuzzy mathematical model for single inventory
management with multiple fuzzy parameters in the case of
allowingmoderate shortages. Besides, supply chain inventory
optimization with controllable lead time under fuzzy envi-
ronment was investigated by Li and Xu (as in [31]). Wang
and Guo (as in [32]) analyzed the inventory risk loss led
by the EOQ and order cycles of classical inventory models

under fuzzy demand to deduce the economic risk function
in fuzzy situation. Kong and Jirimutu (as in [33]) researched
the inventory optimization under stochastic demand based
on Monte Carlo simulation. Xu et al. (as in [34]) explored
the inventory control model during random replenishment
interval with inventory-level-dependent demand.

Most of the above researches were conducted on the
basis of continuous normal population, which made the
researches convenient and operable to some extent. However,
on the premise of uncertain supply and demand, there were
a lot of uncertain factors for inventory optimization. In fact,
most of the demand and supply in reality cannot distribute
continually but present in the form of discrete random vari-
ables usually. As a result, on the assumption that the demand
process of each subwarehouse submitted to the mutually
independent compound Poisson process, the authors carried
out the researches on some aspects, including the opti-
mization and control of inventory system based on supply-
demand balance as well as the algorithm design for the
optimal inventory costs. In addition, the related researches
have a certain value on theoretical research.

Although there have been quite a few researches on inven-
tory control, it is still necessary to takemany factors and vari-
ables into account due to its systematicness and complexity
of inventory problem. Besides, it is difficult to quantify and
define the optimal inventory because the correlation degrees
between each factor are fuzzy. In view of the above facts, the
optimization and control of inventory can be summarized
as a complex dynamic system containing multifactors, while
the quantitative model about the optimization and control of
inventory is considered as a complex system with multiple
variables and multiple parameters. It is very difficult to solve
the problem once and for all by using a single model and a
unified algorithm for the research work of the optimization
and control of inventory. Most of the existing researches were
focused on some specific fields of a particular region to only
work out the specific issues under a certain environment. In
addition, it is inevitable that the research process is influenced
by the subjectivity of the researchers themselves, which
suggests that the optimization and control of inventory under
various situations cannot be solved. Hence, this issue will
undoubtedly attract the persistent attention from the relevant
experts and scholars. Actually, it still plays a very realistic
role in carrying out pertinent researches on optimization and
control model for inventory and algorithm with respect to
some specific fields in different areas.

2. Inventory System Model

From a practical point of view of research object, a necessary
simplification for the research object was conducted during
the research combining the actual conditions of regional
circulation enterprises. For the underdeveloped regions, the
two-echelon inventory system is more common. In order
to improve the practical significance of research results and
enhance the operability, a typical two-echelon inventory
system composed of a central warehouse and several sub-
warehouses was emphatically studied.
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3. Model Assumption and Symbol Description

3.1. Model Assumption

(1) The central warehouse of the two-echelon inventory
system mentioned purchases products from material
suppliers, while the subwarehouses order goods from
the central warehouse.

(2) Both the central warehouse and subwarehouses of
the system carry out the (𝑅, 𝑄) ordering strategy
of continuous review inventory. In other words, the
inventory levels are continuously observed by the
subwarehouses and central warehouse. When the
inventory level reduces to order point 𝑅, the ware-
houses will purchase with lot-size of 𝑄, where the
inventory level refers to the result by subtracting the
stock-outs from the total of on-hand inventory and
the goods of the orders in transit. In this way, the
inventory level is within a range [𝑅, 𝑅 + 𝑄] after
distribution centers and retailers ordering.

(3) The material suppliers can supply materials unlimit-
edly and the delivery time for central warehouse is a
constant, while the transportation time from central
warehouse to subwarehouses is a random variable.
Then, the lead time of subwarehouses consists of
random delay and random transportation time.

(4) The product demand process of subwarehouses is
a mutually independent compound Poisson process,
that is to say, Poisson arrival of consumers. In addi-
tion, the demand of each consumer is a random
integer.

(5) 𝑅
𝑖
≥ −𝑄
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑁) are available for all order

points.
(6) All stock-outs in the two-echelon inventory system

are waiting. Besides, the delayed order-to-delivery
follows the principle of “first come first serve.”

3.2. Symbol Description. The meaning of the symbols in the
research is as follows:

𝑁 is the number of retailers.
𝐿
0
is the fixed delivery time from manufacturers to

distribution centers, namely, the lead time of distri-
bution centers.
𝑇
𝑖
is the random transportation time of goods from

distribution centers to retailers 𝑖.
𝜏 is the random delay of retailer’s orders in distribu-
tion centers.
𝐿
𝑖
is the lead time of retailers 𝑖; 𝐿

𝑖
= 𝑇
𝑖
+ 𝜏.

𝑄
0
is the order quantity of distribution centers.

𝑄
𝑖
is the order quantity of retailers 𝑖.

𝑅
0
is the order point of distribution centers.

𝑅
𝑖
is the order point of retailers 𝑖.

ℎ
0
is the storage costs of unit goods in unit time of

distribution center.

ℎ
𝑖
is the storage costs of unit goods in unit time of

retailers 𝑖.
𝑃
0
is the stock-out losses of unit goods in unit time of

distribution center.
𝑃
𝑖
is the stock-out losses of unit goods in unit time of

retailers 𝑖.
𝐶
0
(𝑅
0
, 𝑄
0
) is the average holding costs and shortage

costs of distribution center in unit time.
𝐶
𝑖
(𝑅
𝑖
, 𝑄
𝑖
) is the holding costs and shortage costs of

retailers 𝑖 in unit time.
𝑇𝐶 is the expected gross costs of the inventory sys-
tem.

4. Hypothesis Testing and Demonstration of
Poisson Distribution

In order to test whether the order demand is subject to Pois-
son distribution, we give an empirical research by taking the
agricultural warehousing company in Akesu area of Xinjiang
as an example. Based on balance theory between supply and
demand, the fertilizers supply quantity of the agricultural
warehousing company within a week is determined by the
demand quantity of farmers, while the supply quantity of the
agricultural warehousing company decides its order quantity.
Hence, the demand-based order quantity of the agricultural
warehousing companywithin aweek depends on the demand
quantity of the farmers in this area in this period. In order to
simplify the problem, the order quantity of each time with
little fluctuation is taken as a constant. By doing so, the order
quantity can be determined by controlling the order times
within a single period.

In general, agricultural production presents seasonality
and periodicity. This epically can be obviously found in
agriculture plantation of Aksu area in Xinjiang province.
As the demand quantity of fertilizers for the farmers in
Aksu area is shown to be stable within some period or a
given time in a season, to some extent, the order times of
the agricultural warehousing company for an arbitrary time
interval within the demand period merely rely on the span
of time interval, instead of the end point of time interval.
In addition, the order events of the agricultural warehous-
ing company happen independently in the nonoverlapping
intervals. Moreover, the probability for the occurrence of two
or more than two order times can be nearly neglected when
the time interval is enough small. As above mentioned, it is
indicated that the order times of the agricultural warehousing
company conform to Poisson stream, indicating stability, no
aftereffect stream, and ordinary (as in [35]). On this basis,
it is supposed that the order demand of the agricultural
warehousing company is subject to Poisson distribution.

In order to verify our supposing, we conducted on-site
interviews to the large and middle size agricultural ware-
housing company and the farmers in various corps. for sur-
veying the demands of various fertilizers. With in-depth
investigation, we have acquired large volume of information
and first-hand data: through the close communication and
contact with themanagers in each corp., the total arable areas
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in Aksu and actual demand quantity of various fertilizers of
each corp. were acquired. Afterwards, we verified the good-
ness of fit for Pearson 𝜒2 of the sample data, to judge whether
the sample data are subject to Poisson distribution or not. It
is noteworthy that the actual demand quantity of fertilizers
is the order demand quantity of the agricultural warehousing
company in fact. The method is described as follows.

By randomly selecting a set of sample data with each
sample size more than 50, the order quantity of each time
is assumed to be a constant when the order quantity of each
time shows little fluctuation. In this case, the order demand
can be directly presented by controlling order times. The
analysis of chosen data indicates that third- or fourth-order
times of the agricultural warehousing company are shown to
be reasonable.

According to statistical quantity,

𝜒
2

𝑖(𝛼)
=

𝑚

∑
𝑗=1

[

[

(𝑓
𝑖𝑗
− 𝑝
𝑖𝑗
)
2

𝑓
𝑖

]

]

. (1)

𝑚 is the number of purchase groups, where𝑚 = 2.
The empirical and theoretical frequencies of stochastic

events are 𝑝
𝑖
and𝑓
𝑖
, respectively, and they indicate significant

difference, with a given confidential level 𝛼; the distribution
of 𝑝
𝑖
does not agree with that of 𝑓

𝑖
; if there is no significant

difference between 𝑝
𝑖
and 𝑓

𝑖
, the random variable distribu-

tion is subject to the theoretical scheme. To validate whether
or not the empirical scheme of the fertilizers demand in a
time interval in some areas is subject to Poisson distribution,
a significant difference between the theoretical and empirical
frequencies needs to be checked. In the case of 𝛼 = 0.05,
𝜒
2

𝛼
= 3.841 refers to the value of 𝜒2 when the degree of

freedom is 1. On this basis, 𝜒2 = 3.5011 is calculated through
𝑅 software programming this is obviously obtained that 𝜒2 <
𝜒2
𝛼
. As can be seen, the selected sample data have passed the

verification of Poisson distribution. This is to say, these data
are subject to the Poisson distribution; the detailed processes
and methods can be seen in the researches (as in [35, 36]). By
frequent sampling on the sample data, various sets of sample
data are obtained by repeating abovementionedmethods and
processes. All chosen sample data have been validated in
Poisson distribution.This further confirmed the feasibility of
our assumption.

Apart from verifying the goodness of fit for Pearson
𝜒
2, the repeated samplings have been conducted on the

sample data. Moreover, the density function was performed
on the simulation of different samples.The simulating results
indicate that the density function approximates to normal
density with increasing quantity of sample size; considering
that the order quantity or order number of a warehouse is
stochastic and independent, the data obtained are discrete
data, as the order number is relatively large. This is because
the corps. in Aksu area mainly make a living by planting;
the demand quantity of various fertilizers is relatively large:
the quantities are usually more than 1,000 tons on average.
The average value of real sample data investigated is 1,093
tons. The total average value estimated is the average value

of the sample data. Based on these two points, the parameter
lambda (total average value) of Poisson distribution is large
according to probability knowledge; as its limit distribution
is normal, it is supposed that the demand data are subject
to Poisson distribution which is assumed to be reasonable
according to the abovementioned analysis results.

As shown in Figure 1, 𝑁 = 16 represents the density
function image of all data investigated, where 𝑁 = 16 refers
to 16 corps. in Aksu. The density functions are obtained by
the simulation when three sample sizes are 30, 60, and 300,
respectively. The analysis and investigation into the simula-
tion of density function images reveal that, in the average
value range of the samples [800, 1200], there is a good sim-
ilarity between Poisson and normal distributions. The large
the sample size, the more favorable the approximation effect.

5. Modeling

On the assumption that the lead time of retailers is a random
variable and the demand process is a compound Poisson
process, the (𝑅, 𝑄) storage model was established with the
aim of minimizing the mean total cost of two-echelon inven-
tory system in unit time (as in [5]).

5.1. The Inventory Model of Central Warehouse. It was as-
sumed that the demand process of subwarehouse 𝑖 is followed
by the compound Poisson process with parameter of 𝜆

𝑖
,

which is the mean unit time of purchasers arriving at sub-
warehouse 𝑖. If 𝑗 is the demand of purchasers, 𝑓

𝑖,𝑗
is the

probability of demand 𝑗 (𝑗 > 0) in retailer 𝑖, 𝜇
𝑖
is the average

demand of retailer 𝑖 in unit time, and 𝜎2
𝑖
is the demand

variance of retailer 𝑖 in unit time, then

𝜇
𝑖
= 𝜆
𝑖

∞

∑
𝑗=1

𝑗
2
𝑓
𝑖,𝑗
,

𝜎
2

𝑖
= 𝜆
𝑖

∞

∑
𝑗=1

𝐿
0
𝜎
2

𝑖
.

(2)

Thereby, the average demand and demand variance of
retailer 𝑖 in the lead time of distribution centers can be
expressed as

𝜇
𝑖
(𝐿
0
) = 𝐿
0
𝜇
𝑖
,

𝑉
𝑖
(𝐿
0
) = 𝐿
0
𝜎
2

𝑖
.

(3)

Because the demand discussed here was Poisson demand,
it could be known according to probability knowledge that
if the sample capacity was great, Poisson distribution would
be approximate to normal distribution. Thus, it was assumed
that the demand of subwarehouse in the lead time of central
warehouse was close to normal distribution (as in [5, 25]).

If the probability for placing 𝑘 orders by subwarehouse 𝑖 to
central warehouse in lead time 𝐿

0
was 𝑝

𝑖,𝑘
(𝐿
0
), the first order

placed after demand was up to 𝑥, where 𝑥 obeyed uniform
distribution on (0, 𝑄

𝑖
), so placing 𝑘 orders by subwarehouse
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Figure 1: The simulation of density function images.

𝑖 within 𝐿
0
means that the demand is between 𝑥 + (𝑘 − 1)𝑄

𝑖

and 𝑥 + 𝑘𝑄
𝑖
; then,

𝑝
𝑖,𝑘
(𝐿
0
) =

1

𝑄
𝑖

∫
𝑄𝑖

0

[𝜙(
𝑥 + 𝑘𝑄

𝑖
− 𝜇
𝑖
(𝐿
𝑜
)

𝜎
𝑖
(𝐿
0
)

)

− 𝜙(
𝑥 + (𝑘 − 1)𝑄𝑖 − 𝜇

𝑖
(𝐿
0
)

𝜎
𝑖
(𝐿
0
)

)] 𝑑𝑥

=
𝜎
𝑖
(𝐿
0
)

𝑄
𝑖

[𝜙
(1)

(
(𝑘 − 1)𝑄𝑖 − 𝜇

𝑖
(𝐿
0
)

𝜎
𝑖
(𝐿
0
)

)

+ 𝜙
(1)

(
(𝑘 + 1)𝑄𝑖 − 𝜇

𝑖
(𝐿
0
)

𝜎
𝑖
(𝐿
0
)

)

− 2𝜙
(1)

(
𝑘𝑄
𝑖
− 𝜇
𝑖
(𝐿
0
)

𝜎
𝑖
(𝐿
0
)

)] ,

(4)

where 𝜙(𝑥) is the standard normal density function and
𝜙(1)(𝑥) is first-order loss function; then, it can be obtained
that

𝜙
(1)

(𝑥) = ∫
∞

𝑥

(𝑢 − 𝑥) 𝜛(𝑢)𝑑𝑢 = 𝜛
(𝑥)

− 𝑥 (1 − 𝜙
(𝑥)
) . (5)

Thereby, the mean 𝜇0
𝑖
(𝐿
0
) and variance 𝑉0

𝑖
(𝐿
0
) of the

demand of central warehouse obtained from subwarehouse
𝑖 in lead time 𝐿

0
can be calculated as

𝜇
0

𝑖
(𝐿
0
) = 𝜇 (𝐿

0
) ,

𝑉
0

𝑖
(𝐿
0
) = ∑(𝑘𝑄

𝑖
− 𝜇
0

𝑖
(𝐿
0
))
2

𝑝
𝑖,𝑘
(𝐿
0
) .

(6)
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To sum up 𝜇0
𝑖
(𝐿
0
) and 𝑉0

𝑖
(𝐿
0
), the mean 𝜇0(𝐿

0
) and

variance𝑉0(𝐿
0
) of demand of central warehouse in lead time

𝐿
0
can be obtained; namely,

𝜇
0
(𝐿
0
) =

𝑁

∑
𝑖=1

𝜇
0

𝑖
(𝐿
0
) ,

𝑉
0
(𝐿
0
) =

𝑁

∑
𝑖=1

𝑉
0

𝑖
(𝐿
0
) .

(7)

𝐼
0
and 𝐼

𝑖
are set as the stochastic inventory levels of

central warehouse and subwarehouse 𝑖, respectively (𝑖 =

1, 2, 3, . . . , 𝑁). Besides, it has been known that the inventory
level of central warehouse is independent of the random vari-
able of demand in lead time and the stationary distribution at
arbitrary time 𝑡 in the interval [𝑅

0
+ 1, 𝑅

0
+ 𝑄
0
] is uniform

distribution (as in [25]).
The total demand of central warehouse is made up of the

random demand of each subwarehouse. In addition, based
on central limit theorem, when sample capacity 𝑁 is large
enough, it can be considered that the demand of central
warehouse in lead time almost obeys normal distribution.
Therefore, the average stock-out quantity of central ware-
house can be acquired as

𝐸 (𝐼
0
)
−
=

1

𝑄
0
− 1

⋅ ∫
𝑄0

1

∫
∞

𝑅0+𝑦

(𝑥 − 𝑅
0
− 𝑦) 𝑑𝜙(

𝑥 − 𝜇0 (𝐿
0
)

𝜎0 (𝐿
0
)

) 𝑑𝑦

=
(𝜎0 (𝐿

0
))
2

𝑄
0
− 1

[𝜙
(2)

(
𝑅
0
+ 1 − 𝜇0 (𝐿

0
)

𝜎0 (𝐿
0
)

)

− 𝜙
(2)

(
𝑅
0
+ 𝑄
0
− 𝜇0 (𝐿

0
)

𝜎0 (𝐿
0
)

)] ,

(8)

where 𝜙(2)(𝑥) is the quadratic loss function of standard nor-
mal distribution, so

𝜑
(2)

(𝑥) = ∫
∞

𝑥

𝜑
(1)

(𝑢) 𝑑𝑢

=
1

2
[(𝑥
2
+ 1) (1 − 𝜑 (𝑥)) − 𝑥𝜛 (𝑥)] .

(9)

Then, the average existing inventory of central warehouse
is

𝐸 (𝐼
0
)
+
= 𝐸 (𝐼

0
) + 𝐸 (𝐼

0
)
−

= 𝑅
0
+
𝑄
0
+ 1

2
− 𝜇
0
(𝐿
0
) + 𝐸 (𝐼

0
)
−
.

(10)

Finally, according to the practical significance, make ℎ
0

and 𝑃
0
the weight value of 𝐸(𝐼

0
)+ and 𝐸(𝐼

0
)−, respectively;

combine (8) and (10); the average holding cost and shortage
cost of distribution center can be expressed as

𝐶
0
(𝑅
0
, 𝑄
0
) = ℎ
0
𝐸 (𝐼
0
)
+
+ 𝑃
0
𝐸 (𝐼
0
)
−
. (11)

5.2. The Inventory Model of Subwarehouse. The randomness
of the lead time of subwarehouse is caused by the random
delay of central warehouse and the uncertainty of transporta-
tion time. Random delay means the random waiting time led
by the stock-outs of central warehouse when subwarehouses
place orders to central warehouse.

𝜏 was set as the random delay of the orders from sub-
warehouses in central warehouse. For the sake of simplicity,
assuming that it is the same to each subwarehouse, the mean
and variance of random delay are 𝐸[𝜏] and𝑉[𝜏], respectively.
The time for central warehouse demanding unit goods is 𝑡

1
,

while the arrival time of the goods to central warehouse is 𝑡
2
.

If 𝑡
1
≥ 𝑡
2
, there is no delay, while if 𝑡

1
< 𝑡
2
, there is a delay,

where 𝜏 = max(𝛿, 0) (𝛿 = 𝑡
2
− 𝑡
1
). According to calculation,

the following relationship can be obtained:

𝐸 [𝜏] =
𝐸 (𝐼
0
)
−

∑
𝑁

𝑖=1
𝜇
𝑖

. (12)

If 𝛿 obeys normal distribution, then
𝑃 (𝛿 ≤ 0) = (−𝜇

𝛿
𝜎
𝛿
) = 𝑃 (𝜏 = 0) , (13)

where

𝑃 (𝜏 = 0) =
1

𝑄
0
− 1

∫
𝑄0

1

𝜑(
𝑅
0
+ 𝑦 − 𝜇0 (𝐿

0
)

𝜎
0
(𝐿
0
)

) 𝑑𝑦,

𝐸 [𝜏] = ∫
∞

0

[1 − 𝜑(
𝑥 − 𝜇
𝛿

𝜎
𝛿

)]𝑑𝑥

= 𝜎
𝛿
𝜙
(1)

(−𝜇
𝛿
𝜎
𝛿
) .

(14)

So it can be obtained that

𝜎
𝛿
=

𝐸 [𝜏]

𝜙(1) (−𝜇
𝛿
𝜎
𝛿
)
,

𝜇
𝛿
= −𝜎
−1

𝛿
(𝑃 (𝜏 = 0)) ,

𝑉 [𝜏] = 𝐸 (𝜏
2
) − (𝐸 [𝜏])

2

= ∫
∞

0

𝑥2

𝜎
𝛿

𝜛(
𝑥 − 𝜇
𝛿

𝜎
𝛿

)𝑑𝑥 − (𝐸 [𝜏])
2

= 𝜎
2

𝛿
(1 − 𝑃 (𝜏 = 0)) + 𝐸 [𝜏] 𝜇𝛿 − (𝐸 [𝜏])

2
.

(15)

If the transportation time 𝑇
𝑖
of subwarehouse 𝑖 obeys the

Gamma distribution with 𝛼
𝑖
and 𝛽

𝑖
as parameters and the

mean and variance of random lead time of subwarehouse 𝑖
are 𝐸
𝑖
(𝐿𝑇) and 𝑉

𝑖
(𝐿𝑇), then

𝐸
𝑖 (𝐿𝑇) = 𝐸 (𝑇

𝑖
) + 𝐸 [𝜏] =

𝛼
𝑖

𝛽
𝑖

+ 𝐸 [𝜏] ,

𝑉
𝑖 (𝐿𝑇) = 𝑉 [𝑇

𝑖
] + 𝑉 [𝜏] =

𝛼2
𝑖

𝑉 [𝜏]
.

(16)

Through further analysis, it can be known that the mean
𝐸
𝑖
(𝐿𝑇𝐷) and variance 𝑉

𝑖
(𝐿𝑇𝐷) of demand of subwarehouse

𝑖 in random lead time 𝐿𝑇 are
𝐸
𝑖 (𝐿𝑇𝐷) = 𝜇

𝑖
𝐸
𝑖 (𝐿𝑇) ,

𝑉
𝑖 (𝐿𝑇𝐷) = 𝜎

2

𝑖
𝐸
𝑖 (𝐿𝑇) + (𝜇

𝑖
)
2
𝑉
𝑖 (𝐿𝑇) .

(17)
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In general inventory model, if the demand process is
Poisson process and the lead time obeys gamma distribution,
most of the demand during lead time is approximated by
using Poisson distribution. However, if there are many sub-
warehouses and themean demand of some subwarehouses in
lead time is small, using normal distribution for approxima-
tion will produce quite a number of negative values, which
is unreasonable. Because its mean and variance values are
the same, the change of demand during lead time cannot be
well reflected by approximating throughPoisson distribution.
Besides, the characteristics of negative binomial distribution
can preferably conform to the practical situation of the
demand of retailers during lead time. In addition, it takes
Poisson distribution as limiting distribution. As a result, it
is more reasonable to utilize negative binomial distribution
for approximating the demanddistribution of retailers during
lead time (as in [26]).

If the demand of retailer 𝑖 in lead time can obey the
negative binomial distribution with 𝑛

𝑖
and 𝑃

𝑖
as parameters,

distribution density function and distribution function are,
respectively, 𝑔

𝑖
(𝑥) and 𝐺

𝑖
(𝑥) (𝑖 = 1, 2, . . . , 𝑁); then,

𝑃
𝑖
=
𝑉
𝑖 (𝐿𝑇𝐷) − 𝐸

𝑖 (𝐿𝑇𝐷)

𝑉
𝑖 (𝐿𝑇𝐷)

,

𝑛
𝑖
=

𝐸2
𝑖
(𝐿𝑇𝐷)

𝑉
𝑖 (𝐿𝑇𝐷) − 𝐸

𝑖 (𝐿𝑇𝐷)
.

(18)

Setting𝐺(0)
𝑖
(𝑥) = 1−𝐺

𝑖
(𝑥), because 𝑛 is not an integer, it is

impossible to calculate accurately 𝑔
𝑖
(𝑥) and 𝐺

𝑖
(𝑥). Thus, the

first-order loss function 𝐺(1)(𝑥) and quadratic loss function
𝐺(2)(𝑥) (𝑥 ≥ 0) for 𝐿𝑇𝐷 are as follows:

𝐺
(1)

(𝑥) = 𝐸 {[𝑋 − 𝑥]
+
} = ∑
𝑦≥𝑥

𝐺
(0)

𝑖
(𝑦) = [

𝑛
𝑖
𝑃
𝑖

1 − 𝑃
𝑖

− 𝑥]

⋅ 𝐺
(0)

𝑖
(𝑥) + (𝑥 + 𝑛

𝑖
)

𝑃
𝑖

1 − 𝑃
𝑖

𝑔
𝑖 (𝑥) ,

𝐺
(2)

(𝑥) =
1

2
𝐸 {[𝑋 − 𝑥]

+
[𝑋 − 𝑥 − 1]

+
} =

1

2

⋅ 𝐸 {𝑋 [𝑋 − 1]} − ∑
0<𝑦≤𝑥

𝐺
(1)

(𝑦)

=
1

2
{𝑛
𝑖
(𝑛
𝑖
+ 1) [

𝑃
𝑖

1 − 𝑃
2

]

2

− 2
𝑛
𝑖
𝑃
𝑖

1 − 𝑃
𝑖

𝑥

+ 𝑥 (𝑥 + 1) 𝐺
(1)

(𝑥)

+ [
(𝑛
𝑖
+ 1) 𝑃

𝑖

1 − 𝑃
𝑖

− 𝑥] (𝑥 + 𝑛
𝑖
)

𝑃
𝑖

1 − 𝑃
𝑖

𝑔
𝑖 (𝑥)} .

(19)

In the same way of central warehouse, it can be obtained
that subwarehouses 𝑖 are equally distributed on [𝑅

𝑖
+1, 𝑅
𝑖
+𝑄
𝑖
]

at arbitrary time. Hence, it can be acquired that the average
stock-out quantity of subwarehouse 𝑖 is as follows:

𝐸 (𝐼
𝑖
)
−
=

1

𝑄
𝑖
− 1

∫
𝑄

1

∫
∞

𝑅𝑖+𝑦

(𝑥 − 𝑅
𝑖
− 𝑦) 𝑔

𝑖 (𝑥) 𝑑𝑥 𝑑𝑦

=
1

𝑄
𝑖
− 1

[𝐺
(2)

(𝑅
𝑖
+ 1) − 𝐺

(2)
(𝑅
𝑖
+ 𝑄
𝑖
)] .

(20)

Then, corresponding to (10), the average existing inven-
tory of subwarehouse 𝑖 is

𝐸 (𝐼
𝑖
)
+
= 𝐸 (𝐼

𝑖
) + 𝐸 (𝐼

𝑖
)
−

= 𝑅
𝑖
+
𝑄
𝑖
+ 1

2
− 𝐸
𝑖 (𝐿𝑇𝐷) + 𝐸 (𝐼

𝑖
)
−
.

(21)

Therefore, according to the practical significance, make
ℎ
𝑖
and 𝑃

𝑖
the weight value of 𝐸(𝐼

𝑖
)+ and 𝐸(𝐼

𝑖
)−, respectively;

combine (20) and (21); the average holding cost and shortage
cost of subwarehouse 𝑖 can be obtained as

𝐶
𝑖
(𝑅
𝑖
, 𝑄
𝑖
) = ℎ
𝑖
𝐸 (𝐼
𝑖
)
+
+ 𝑃
𝑖
𝐸 (𝐼
𝑖
)
−
. (22)

As the total inventory cost is equal to the inventory cost
of the central warehouse and the warehouse, combine (11)
and (22); through calculation and derivation, the expected
total cost function of two-echelon inventory system can be
expressed as

𝑇𝐶 = 𝐶
0
(𝑅
0
, 𝑄
0
) +

𝑁

∑
𝑖=1

𝐶
𝑖
(𝑅
𝑖
, 𝑄
𝑖
) . (23)

5.3. Optimizing and Control Inventory Cost. Through analyz-
ing the cost structure of two-echelon inventory system, the
inventory control model based on cost optimization can be
obtained as follows:

min𝑇𝐶 = min[𝐶
0
(𝑅
0
, 𝑄
0
) +

𝑁

∑
𝑖=1

𝐶
𝑖
(𝑅
𝑖
, 𝑄
𝑖
)] . (24)

The key to solving the model is to select appropriate order
point 𝑅∗

𝑖
and order quantity 𝑄∗

𝑖
(𝑖 = 0, 1, . . . , 𝑁) to make the

objective function achieve the optimum value.
Firstly, 𝑅

0
and 𝑄

0
are given to determine the order point

𝑅∗
𝑖
(𝑅
0
, 𝑄
0
) and order quantity 𝑄∗

𝑖
(𝑅
0
, 𝑄
0
) of subwarehouse

𝑖. According to the analysis, it can be known that 𝐸(𝐼
𝑖
)
− is a

convex function of𝑅
𝑖
and𝑄

𝑖
, and𝐸(𝐼

𝑖
)
+ is a linear equation of

(𝑅
𝑖
, 𝑄
𝑖
).The nonlinear combination𝐶

𝑖
(𝑅
𝑖
, 𝑄
𝑖
) is still a convex

function based on (𝑅
𝑖
, 𝑄
𝑖
). It can be known that theremust be

optimal 𝑅
𝑖
, 𝑄
𝑖
to minimize 𝐶

𝑖
(𝑅
𝑖
, 𝑄
𝑖
) through the properties

of convex function.
After further simplifying the objective function, it can be

obtained that

𝑇𝐶 (𝑅
0
, 𝑅
𝑖
) = 𝐶
0
(𝑅
0
) +

𝑁

∑
𝑖=1

𝐶
𝑖
(𝑅
0
, 𝑅
𝑖
) . (25)
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Table 1: Ordering costs of each cycle (104 Yuan).

Actual value Simulation value
𝑁 = 6 𝑁 = 5 𝑁 = 7 𝑁 = 8 𝑁 = 9 𝑁 = 10 𝑁 = 50

Nitrogen 957.03 1109.0625 848.44 742.8 659.9 633.28 633.28
Phosphate 783.025 783.02 114.6019 112.3126 110.5313 872.9776 872.9776
Potassium 34.829 27.8632 39.80624 43.53625 46.43737 48.7606 48.7606
Other 34.829 27.8632 39.80624 43.53625 46.43737 48.7606 48.7606
Total 1914.0625 2060.1268 1102.778 996.515 913.0875 1696.259 1696.259

5.4. The Analysis and Calculation of the Optimal Inventory
Cost. The inventory model established in the research is a
two-echelon inventory system model containing a central
warehouse and several subwarehouses. If the total cost of the
system is the sum of the cost of the central warehouse and all
the subwarehouses, then it can be acquired by determining
the optimal cost of each warehouse.

The optimal inventory cost can be computed by the fol-
lowing two steps.

First step is to find the optimal order point 𝑅∗
𝑖
(𝑅
0
) of

retailer 𝑖 by fixing 𝑅
0
and minimizing 𝐶

𝑖
(𝑅
0
, 𝑅
𝑖
). Through

the above theorem, it can be known that 𝐶
𝑖
(𝑅
𝑖
, 𝑄
𝑖
) is a

convex function of (𝑅
𝑖
, 𝑄
𝑖
); then, the necessary condition for

obtaining extreme value of 𝐶
𝑖
(𝑅
0
, 𝑅
𝑖
) is that

𝜕𝐶
𝑖
(𝑅
0
, 𝑅
𝑖
)

𝜕𝑅
𝑖

= 0. (26)

The root of equation 𝑅∗
𝑖
(𝑅
0
) can be solved by using one-

dimensional search method.
Second step is to solve 𝑅

∗

0
by minimizing 𝑇𝐶. Because

𝑇𝐶 for 𝑅
0
may not be a convex function, a simple search

programwas designed to find out the locally optimal solution
𝑅
∗

0
.

Step 0. Consider 𝑅
0

= −𝑄
0
, step = ⌈𝜇0(𝐿

0
)⌉, and 𝐶∗ =

𝑇𝐶[𝑅
0
, 𝑅∗
𝑖
(𝑅
0
)].

Step 1. Consider 𝑅
0
= 𝑅
0
+ step, marking the corresponding

order points as 𝑅̂
0
.

Step 2. If step = 1, 𝑅∗
0
= 𝑅̂
0
; otherwise, let 𝑅

0
= max(𝑅

0
, 𝑅̂
0
−

step), step = ⌈step/10⌉, go back to Step 1.

The complexity of two search algorithms utilized
for solving the optimum values of the order points of
central warehouse and subwarehouses was added up as
𝑂(log𝑅∗

0
∑
𝑁

𝑖=1
log𝑅∗
𝑖
), which is the linear function of 𝑁.

According to the solving steps above, the corresponding
mathematical model is as follows:

min (𝐶
0
(𝑅
0
) +

𝑁

∑
𝑖=1

𝐶
𝑖
(𝑅
0
, 𝑅
𝑖
))

s.t.
𝑁

∑
𝑖=1

𝐶𝑄
𝑖
≤ 𝑊

𝑄
𝑖
∈ (0,∞) , 𝑖 = 1, 2, . . . , 𝑁.

(27)

6. Model Solving and Main Results

6.1. The Empirical Analysis and Numerical Simulation Test.
Through on-site survey to the 16 corps. in Aksu area of
SouthXinjiang, and the agricultural warehousing company in
and surrounding this areas, a large logistics storage company
whose business covers whole Aksu area is taken as research
object; the company has a developed warehouse system
consisting of six bases which are one headquarter warehouse
base and five subwarehouse bases. This company supplies
fertilizers to the 16 corps. around Aksu areas. We therefore
acquired the demand quantities of various fertilizers for each
corp. and the order cycles of the logistics warehousing com-
pany. Moreover, we constructed an optimization model for
the optimal order cost and inventory cost in each circle and
provided an optimal inventory cost algorithm. By combining
MATLAB programming, the optimal order cost in single
circle and the optimal inventory cost for various fertilizers,
as well as the corresponding total cost of single circle order
and the optimal total inventory cost, are solved. Besides, a
statistical simulation method was used to simulate the cases
when the warehouse quantities are 5, 7, 8, 9, 10, and 50,
respectively. The simulated results of the optimal order cost
in single period, and corresponding total order cost in single
period, of various fertilizers are compared with empirical
results, as shown in Table 1. Moreover, the empirical and
simulated results of the optimal inventory cost of various
fertilizers and corresponding optimal total inventory cost are
compared also, as indicated in Table 2.

Figure 2 indicates the simulated tendency of the order
cost and the total order cost in single period for various kinds
of fertilizers including nitrogen, phosphate, and potassium
fertilizers.

6.2.The Analysis of Empirical and Simulated Results. Accord-
ing to the statistics analysis of the original data obtained, the
optimal order cost in single period of nitrogen, phosphate,
and potassium fertilizers aswell as other fertilizers is obtained
when the planting areas of the Aksu in Xinjiang province
and 6 warehouses are given. Besides, statistics simulation
method was used to conduct simulation when the number of
warehouses is 5, 7, 8, 9, 10, and 50, respectively.The simulated
results show that as the number of warehouses increases to 9
from 5, the order costs and total order cost of single period,
for nitrogen and phosphate fertilizers, decrease obviously.
This is because the demands of nitrogen and phosphate
fertilizers are large, which occupy higher proportion in
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Table 2: The optimal inventory costs (104 Yuan).

Actual value Simulation value
𝑁 = 6 𝑁 = 5 𝑁 = 7 𝑁 = 8 𝑁 = 9 𝑁 = 10 𝑁 = 50

Nitrogen 5742.1875 5545.3125 5939.08 5942.4 5939.1 6332.8 6332.8
Phosphate 4698.1534 3915.1 802.2133 898.5008 994.7817 8729.776 8729.776
Potassium 208.98 139.316 278.6437 348.29 417.9363 487.606 487.606
Other 208.98 139.316 278.6437 348.29 417.9363 487.606 487.606
Total 11484.375 10300.634 7719.446 7972.12 8217.788 16962.59 16962.59
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Figure 2: The simulated tendency of the order cost and the total order cost in single period for various kinds of fertilizers.

order cost; the total order cost is mainly determined by
nitrogen and phosphate fertilizers. In contrast, as the number
of warehouses rises, the order costs of single period for
potassium and other fertilizers increase. This is because the
demands of potassium fertilizer and other microelement
fertilizers are small; the small number of warehouses can
sufficiently store minor amount of potassium fertilizer and
other fertilizers, while a large number of warehouses tend to
cause waste resources and unnecessary cost. As the number
of warehouses increases to or greater than 10, the total
order cost of single period for various fertilizers tend to be
stable, as indicated in Figure 1. From the perspective of the
order cost of single period for a fertilizer, the demand of
nitrogen fertilizer is large and stable.With increasing number
of warehouses, the quantity of nitrogen fertilizers has been
well supplied in each warehouse so as to satisfy the real
time demands of customers. This makes the order cost of
single period for nitrogen fertilizer reduce. Phosphate and
potassium fertilizers, as well as other fertilizers, all show an
apparent fluctuationwhen the number of warehouses is equal
to or greater than 10, and their order costs increase obviously.
This is because the fact that as the number of warehouses
increases, the order quantities of these fertilizers are likely
to rise greatly so as to fully utilize warehouse. In addition,
these fertilizers have high price; consequently, the order costs
of single period increase. Regardless of construction and
management costs, the optimal order cost of single period is

proven to be most ideal when the number of warehouses is
9. Based on the abovementioned results, the empirical results
are consistent with simulated results.

Table 2 presents the calculated and simulated results of
the optimal inventory cost.When the warehouse number is 7,
the optimal total inventory cost of all fertilizers is minimum.
For the perspective of nitrogen fertilizer, its optimal inventory
cost is minimum when the warehouse number is 5; for phos-
phate fertilizer, its optimal inventory cost is the smallest when
the warehouse number is 7; however, the optimal inventory
costs of potassium and other fertilizers are minimum when
the warehouse number is 5. When the warehouse number is
equal to or greater than 10, the inventory costs and optimal
inventory costs of different fertilizers tend to be stable. Since
Xinjiang belongs to an arid and alpine area, the corps.
demand great quantity of phosphate fertilizer. Considering
the phosphate fertilizer is relatively expensive, it is suggested
to mainly concern a minimum optimal inventory cost of
phosphate fertilizer in our optimization decision with the
optimal warehouse number of 7.

7. Conclusion

In the process of numerical simulation, the optimal stock and
the optimal inventory costs of various agricultural products
were obtained by continuously modifying the values of
parameters in model. At the same time, the stock and the
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ordering costs of all products in each cycle were acquired.
Through constantly adjusting the initial values of the vari-
ables in model, it was found that all models with reasonable
initial values can converge to a stable equilibrium solution,
namely, the optimal solution in finite steps, so as to verify the
reliability of the model. In order to investigate the stability
of parameters, the authors performed sensitivity analysis for
the parameters in the model. As indicated by the numerical
simulation results, there only appeared some fluctuations by
slightly varying and modifying the values of parameters in
the model during numerical simulation test. It was verified
that the stability of the parameters inmodel was preferable. In
the simulation testmentioned, the authors discovered that the
convergence efficiency of algorithmwas greatly influenced by
selecting different initial values for variables. Moreover, the
convergence efficiency of algorithms was high by choosing
initial values close to equilibrium solution.

Considering supply-demand balance, the research started
from demand analysis. On the assumption that the demand
process obeyed mutually independent compound Poisson
process, a two-echelon inventory system consisting of a cen-
tral warehouse and several subwarehouses was constructed
through simplifying the research object. Besides, aiming at
minimizing the mean total cost of inventory system in unit
time, the optimization and control model for inventory of the
system was established. In addition, the optimal algorithm
for computing the inventory cost was provided. Meanwhile,
a numerical simulation experiment was conducted, and
the numerical results illustrated that the optimal inventory
strategy wasmuch influenced by the uncertainty of lead time.
In this paper, the researchers explored the issue about the
optimization and control of inventory system and established
the corresponding optimization and controlmodel for inven-
tory to optimize the allocation of resources and utilize the
limited inventory resources effectively by managing them
quantitatively. The related research results offered a certain
practical value and reference for the optimal management
of agricultural materials inventory of agricultural material
enterprises in Xinjiang. The modeling idea and method
presented in this paper are excepted to be further developed
to the higher-level multiechelon inventory structure.
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