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Abstract

I study coverage requirements, a common regulation in the mobile telecommu-

nications industry that intends to accelerate the roll-out of new mobile telecom-

munications technologies to disadvantaged areas. I argue that the regulation may

engender entry deterrence effects that limit its efficacy and lead to technology in-

troduction patterns that are not cost-efficient. To quantify the impact of coverage

requirements on market structure and the speed and cost of technology roll-out,

I develop and estimate a dynamic game of entry and technology upgrade under

regulation. I estimate the model using panel data on mobile technology availabil-

ity at the municipality level in Brazil. In counterfactual simulations, I find that

coverage requirements accelerate the introduction of 3G technology by just over 1

year, on average, and reduce firms’ profits by 24% relative to a scenario with no

regulation. I find the entry deterrence effects to be small. Moreover, an alternative

subsidization policy leads to a similar acceleration in the roll-out of 3G and sub-

stantially higher aggregate profits, likely increasing aggregate welfare relative to

coverage requirements.
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1 Introduction

In industries with large fixed costs, firms’ failure to appropriate the consumer surplus
they generate when they enter new markets and introduce new products may lead
to underprovision of goods and services. This possibility is particularly relevant in
disadvantaged areas, where the prospects of recouping fixed costs are dim. Concerns
regarding service underprovision have led to regulatory oversight and intervention in
many industries, such as postal service, healthcare, airlines, and telecommunications.1

These concerns have historically been particularly salient in the telecommunications
industry (Wu (2010)). The substantial investment costs required for network expan-
sion raise fears that firms will not provide service and bring new mobile telecommu-
nications technologies to low-income, rural, or isolated localities, despite the consider-
able benefits associated with these services.2 These concerns have led to the regulation
of the roll-out of new mobile telecommunications technologies in countries ranging
from Nigeria to the United States. This paper studies the effects of existing regulation
on the introduction of new mobile telecommunications technologies, and evaluates
the desirability of existing regulation relative to alternative forms of intervention.

Mobile telecommunications markets are typically characterized by a small number
of firms. To provide mobile telecommunications services, these firms must acquire
from the government licenses to use the radio spectrum. These licenses tyically cover
large geographic areas containing many local markets. In the absence of regulation,
firms would choose to provide service and introduce new technologies in those mar-
kets where variable profits exceed fixed costs, potentially leaving some areas without
service or access to new technologies. To avoid this outcome, regulators impose what
are called coverage requirements. A coverage requirement tasks a single firm with
providing service of a specific technology in a given area by a date set by the regula-
tor.3

The goal of this paper is to understand the welfare effects of coverage require-

1USPS is subject to a Universal Service Obligation. The HRSA runs the Medicare Rural Hospital
Flexibility Program. The DOT runs the Essential Air Service and Small Community Air Service De-
velopment Program. The Universal Service Administrative Company spends almost ten billion dollars
annually in subsidies for high-speed broadband access.

2Telecommunications services have been shown to have positive effects on economic growth
(Roller and Waverman (2001), Czernich, Falck, Kretschmer, and Woessmann (2011)); labor productiv-
ity (Bertschek and Niebel (2016), Akerman, Gaarder, and Mogstad (2015)); market efficiency (Jensen
(2007)), and risk-sharing (Jack and Suri (2014)). Aker and Mbiti (2010) discuss many other potential
benefits of mobile telecommunications in developing countries.

3Another common form of coverage requirements is that firms are obliged to provide service to at
least some fraction of the territory covered by their license by a date set by the regulator. This fraction
varies across countries and in some cases is close to 1.
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ments and alternative regulatory interventions. At first glance, the trade-off faced by
regulators when deciding whether or not to impose a coverage requirement is clear.
On the one hand, the requirement presumably accelerates the introduction of the new
technology in the regulated area, thus increasing the discounted stream of consumer
surplus. On the other hand, coverage requirements impose a cost on the regulated
firm, for it is required to enter a market or upgrade its technology when it might not
have done so in the absence of regulation. The oligopolistic structure of the mobile
telecommunications industry overturns this apparent simplicity. A coverage require-
ment is a credible commitment to provide service on the part of the firm subject to the
regulation. This commitment may deter entry by the other firms and lead to further
changes in equilibrium behavior that diminish or even reverse the acceleration of the
introduction of the new technology alluded to above.

To quantify the effects of coverage requirements and alternative policies, I develop
and estimate an empirical dynamic game of firm entry and technology upgrade un-
der regulation. Firms’ incentives to enter a market and upgrade their technologies are
determined by the incremental variable profit derived from those choices and the asso-
ciated sunk costs. Therefore, an appropriate empirical model must accurately capture
the key features determining those profits and costs. An important characteristic of
rapidly evolving industries such as mobile telecommunications is that demand for a
new technology tends to increase over time whereas the associated adoption costs tend
to decrease. Also important are local market features that shape demand and costs, as
well as the local market structure. To account for these key factors, I model firms’ flow
profits as a time-varying function of market structure and local demographic charac-
teristics. The model also allows the costs of introducing a new technology to vary over
time and across local markets.

The other crucial determinant of firms’ incentives to introduce the new technology
is, of course, the regulation. In the model, as in the data, in each market exactly one
firm is required to provide 3G service by a date set exogenously by the regulator. I
model the regulation’s enforcement by assuming that the regulated firm must pay a
fine in every period after the regulation deadline in which it fails to comply with the
regulation. There are two dimensions to the incentives stemming from the regulation,
given its asymmetric nature. First, the single regulated firm has an added incentive to
introduce the new technology, to avoid triggering punishments for non-compliance.
Second, the firms that are not subject to the regulation know that the regulated firm
will be in the market in the future, and with the new technology. Therefore, they
know that the market will be more competitive in the future, and that knowledge
negatively affects their incentives to enter and introduce the new technology. The
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latter mechanism may give rise to a further response by the regulated firm: knowing
that the unregulated firms will not enter the market and knowing that adoption costs
decrease over time, the regulated firm may have an incentive to wait for costs to fall
before introducing the new technology. As this discussion makes clear, capturing these
mechanisms requires an equilibrium model of entry and technology adoption.

The question of how much later (or earlier) the introduction of 3G technology
would have ocurred in the absence of regulation is a question about time, and thus
requires a dynamic model. The nature of the regulation, which sets a deadline for
the introduction of the new technology, also makes the problem dynamic (and non-
stationary). These aspects justify the dynamic nature of the model.

The time-varying nature of variable profits and technology adoption costs and the
regulation deadline make the environment non-stationary, a departure from most of
the literature on empirical dynamic games. I also depart from the existing empirical lit-
erature on technology adoption, which applies full-solution estimation routines based
on backward induction solution algorithms. I instead assume that structural param-
eters stabilize before the end of the sample and focus on what I call quasi-stationary
Markov Perfect Equilibria (QMPE). Essentially, QMPE have a non-stationary phase
followed by a stationary phase. This structure allows me to adapt existing estimation
methods used in stationary dynamic games to a non-stationary setting.

I estimate the model using new panel data on mobile technology availability at the
municipality level in Brazil from June 2013 to June 2020. I analyze firms’ entry and
technology upgrade behavior in a set of mostly rural municipalities. In each of these
municipalities, exactly one of the four major carriers in the country was required to
provide 3G service by a date set by the regulator. I call that firm the regulated firm.
The identity of the regulated firm varied across municipalities; all of the four major
carriers in the country are regulated in some markets but not others. Comparing the
behavior of regulated and unregulated firms shows that the latter are less likely to
enter a market or upgrade their technology when the regulated firm is yet to satisfy
its coverage requirement. This pattern is consistent with the entry deterrence effect
outlined above.

The model estimates show that the profits and costs associated with 3G are stable
over my sample period. The profits associated with 4G rise sharply, and the costs of
4G installation decrease substantially. The latter inference is driven by a sharp increase
in 4G introductions in the final part of the sample. The cost of non-compliance with
the regulation is not directly observed, but it is identified from differences in behavior
between regulated and unregulated firms. I estimate it to be sizeable: it amounts to
about 40% of the median entry cost.
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Counterfactual exercises show that in the absence of coverage requirements, 3G
technology would have been introduced 1.15 year later, on average. Coverage require-
ments accelerate the introduction of 3G in almost all municipalities, but there is sub-
stantial heterogeneity in the magnitude of that effect. For four markets, equilibrium
effects imply that the regulation delays the introduction of 3G, though those effects
are quantitatively small. The regulation reduces firms’ aggregate expected profits by
1.2 billion 2010 USD, or 24.14% of the profits they obtain in the absence of regulation.
I find the entry deterrence effects to be small; the overall effect of the regulation is
almost equal to its direct effect on the regulated firm.

I also use the model to evaluate alternative policy interventions. I find that a pol-
icy that subsidizes the first firm to introduce 3G technology leads to a slightly larger
acceleration of its roll-out. Moreover, firms benefit substantially from the subsidy:
their aggregate profits increase by 659 million dollars, or 17% of their earnings under
coverage requirements, after accounting for the financing of the subsidy. These gains
stem primarily from a more cost-efficient pattern of technology adoption. The subsidy
typically leads an incumbent to introduce the new technology, whereas coverage re-
quirements are imposed on potential entrants in many cases. Incumbents only incur
technology installation costs, whereas potential entrants also incur entry costs, which
I estimate to be sizeable. This difference drives the cost-efficiency gains. Moreover,
subsidy recipients also directly benefit from it. The cost efficiencies associated with
the subsidy come at the expense of reduced competition in the market. However, I
estimate that one more firm in the market has to generate a gain in consumer surplus
that exceeds 40% of consumers’ average expenditures for coverage requirements to be
preferred to the subsidy. These results suggest that subsidization is a more efficient
policy than the current form of regulation.

This paper relates to the literature studying how regulation affects market structure
and market outcomes in dynamic environments. Ryan (2012) shows that stricter envi-
ronmental regulation increases entry costs, thus decreasing both the number of firms
in the market and consumer surplus. Gowrisankaran, Lucarelli, Schmidt-Dengler, and
Town (2011) study the effect of the Medicare Rural Hospital Flexibility Program on
health care provision in rural America, and show that the program expanded cover-
age but had a net adverse effect on consumer welfare due to provisions that limited the
size and scope of regulated hospitals. Dunne, Klimek, Roberts, and Xu (2013) study
the effects of entry subsidies under the Health Professional Shortage Areas program
on local market structure. I contribute to this literature by studying the effect of reg-
ulation on the set of products (mobile telecommunications technologies) offered by
firms and by studying the effects of asymmetric regulation.
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This paper also relates to the empirical literature on technology adoption. Schmidt-
Dengler (2006) studies US hospitals’ decisions to adopt magnetic resonance imaging
(MRI). Igami (2017) studies how cannibalization, preemption, and incumbents’ cost
advantages shape firms’ adoption of a new generation of hard disk drives. My pa-
per adds to this literature by studying how regulation affects technology adoption.
Methodologically, my work departs from the previous literature on technology adop-
tion. Models of technology adoption must allow for time-varying demand and adop-
tion costs. The aforementioned papers accommodate this source of non-stationarity
and apply full solution estimation methods, based on backward induction algorithms.
Backward induction can be applied in these settings due to a finite horizon assump-
tion (Igami (2017)) or full adoption in finite time (Schmidt-Dengler (2006)). I instead
model technology adoption as happening in an infinite horizon and assume that the
game has a non-stationary part followed by a stationary part. The aforementioned no-
tion of quasi-stationary Markov Perfect Equilibria allows me to adapt existing iterative
estimation methods to this non-stationary setting.

My work also relates to the literature on regulation in telecommunications mar-
kets. Most recently, Björkegren (2019) has studied the adoption of mobile phones in
Rwanda, and in that context evaluated the welfare effect of rural coverage require-
ments imposed on the dominant mobile network operator. His model is one of con-
sumer choice, not firm rollout. I add to this work by modeling how firms respond to
the coverage requirements, and moreover by doing so in an oligopoly context. My
work also relates to an earlier, mostly theoretical, literature on universal service obli-
gations, such as Armstrong (2001), Choné, Flochel, and Perrot (2002), and Valletti,
Hoernig, and Barros (2002), that was motivated by liberalization in the telecommuni-
cations industry (and also in the postal services industry) in the 1990s. My work is the
first to empirically quantify the effect of such regulation on service provision and the
introduction of new technologies.

Methodologically, this paper is related to a long literature on applied dynamic
games, going back to Ericson and Pakes (1995). The model I will present below will be
a dynamic game with discrete controls. A number of estimators have been proposed
for stationary dynamic games with discrete controls, e.g., Aguirregabiria and Mira
(2007), Pakes, Ostrovsky, and Berry (2007), and Pesendorfer and Schmidt-Dengler
(2008). I will depart slightly from that literature in that my model will feature a non-
stationary phase followed by a stationary phase. I show that with a cross-section of
markets and the notion of Quasi-Stationary Markov Perfect Equilibria, these estima-
tors can be applied to non-stationary settings.

The rest of the paper is organized as follows. Section 2 introduces the institutional
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setting, the data, and presents some preliminary evidence on the effects of coverage
requirements on firm behavior. Section 3 introduces a model of entry and technology
upgrade with regulated and unregulated firms. Section 4 discusses the identification
and estimation of the model, and also discusses the parameter estimates. Section 6
presents the counterfactual analysis. Finally, section 7 provides concluding remarks.

2 Institutional Setting and Data

Operators of mobile telecommunications networks transmit data through the radio
frequency spectrum, which is a public resource and is subject to government manage-
ment in most countries. Starting in the 1990s, many countries have adopted auctions
as their means of allocating frequency bands to firms, including mobile telecommu-
nications service providers. In these auctions, the government sells licenses to use
bands of the radio frequency spectrum. These licenses typically come with a number
of conditions, chief among them the coverage requirements that are the focus of this
paper.

The Brazilian mobile telecommunications market is characterized by 6 mobile net-
work operators (MNO), i.e., carriers that operate their own network infrastructure.
There is also a handful of very small mobile virtual network operators (MVNO), which
are carriers that do not own their own infrastructure, and instead rent space in one of
the MNO’s infrastructure. Of the 6 MNOs, four provide service in all of the country
and have held licenses covering the entire Brazilian territory since the introduction of
mobile telecommunications in the country. The other two MNOs provide more local-
ized service. There has been no entry or exit in this market in the past twenty years4.

The Brazilian government conducted its first spectrum auction in 2007 and has
since then imposed coverage requirements on the winners of these auctions. For the
purpose of this paper, a coverage requirement is an imposition that a firm provide
service in some well defined market by a deadline set by the regulator and with a
minimum technological requirement (e.g., the firm may be required to provide 4G
service, or either 3G service or 4G service). In Brazil, the relevant market for the im-
plementation of the regulation is a municipality, and the requirement is considered to
be satisfied if that firm provides the designated service in 80% of the municipality’s
territory. The details of the coverage requirements are a function of municipality pop-

4In the last couple of years, a process of consolidation has started. Nextel, one of the two small
MNOs was sold to Claro, one of the large ones. Oi, one of the big firms, is in the process of being sold,
most likely to a consortium formed by the other three large MNOs.
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ulation. In municipalities with more than 100,000 inhabitants, 4 MNOs were required
to provide 3G service by April 2013; in municipalities with population between 30,000
and 100,000, 3 MNOs were required to provide 3G service by the end of 2017; and in
municipalities with population below 30,000, 1 MNO was required to provide 3G ser-
vice.5 For the latter group of municipalities, there were four different deadlines: April
2014, April 2016, June 2017, and December 2019.

I focus on the group of municipalities with less than 30,000 inhabitants. The cov-
erage requirements targeting these municipalities are the most likely to influence the
availability of service, for in larger municipalities it is probable that firms would have
sufficient incentives to enter the market by themselves6 I will speak of the single firm
in each of these markets that is subject to a coverage requirement as the regulated firm;
I will refer to the other firms as the unregulated firms. All the MNOs are regulated in
some markets, but not all. Though these coverage requirements target the introduc-
tion of 3G technology, the regulated firm is considered to comply with the regulation
if it deploys 4G technology instead. The descriptive analysis in this section uses data
from all the municipalities with less than 30,000 inhabitants7. The structural analysis
will focus on the subset of municipalities with a December 2019 deadline8.

The motivation for coverage requirements rests on two premisses. First, mobile
telecommunications services generate substantial welfare gains9. In the words of the
Brazilian telecom regulator10:

[Mobile telecommunications technologies] create employment opportunities,
improve the education system, increase firm productivity, allow access to public
digital services, among other benefits.

Second, for the intervention to be justified, it must be that firms do not internalize the
entirety of the surplus generated by their entry and introduction of new technologies.
This seems likely, given the multiple aspects of these benefits and firms’ limited ability

5There are also coverage requirements related to 4G technology, but those only apply to municipali-
ties with population above 30,000. There is no 4G coverage requirement in the municipalities with less
than 30,000 inhabitants, which are the ones I focus on.

6It is likely that the coverage requirements targeting larger municipalities affect the number of firms
in the market, but not the availability of service, which is the focus in this paper.

7The sample used here is subject to a single sample selection criterion. The regulator has provided
me with two different sources of information on the identify of the regulated firm in each market. I
keep only the municipalities where these two sources agree with each other.

8This is mostly for computational convenience, as in the structural model the definition of the state
space depends on the regulation deadline. A revision of this paper will incorporate data from the other
municipalities with less than 30,000 inhabitants.

9See, e.g., the references in footnote 2
10See, https://www.anatel.gov.br/setorregulado/telefonia-movel (last accessed in

October 22, 2020).
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to price discriminate.
Coverage requirements are enforced by the regulator in a number of ways. First,

carriers are required to deposit financial guarantees with the regulator; these guaran-
tees can be executed if the carrier fails to satisfy its coverage requirements. Perhaps
more importantly, if a carrier fails to satisfy its coverage requirements, its license can
be revoked. In this case, the carrier would also be charged the value paid for its license
in proportion to the time used.

The selection of which carrier was to hold the coverage requirement in each mu-
nicipality was subject to a number of rules. First, the country was divided into 131
“service areas”. These varied substantially in size, from a single municipality to an
entire code area, which include on average 83 municipalities. Within each of these
service areas, one of the four large carriers was required to select 2.5% or 5% of the
municipalities in that service area that were subject to the 3G coverage requirements
imposed in 2012. The fraction of municipalities to be chosen depended on the license
acquired by the firm. The carriers would take turns until all municipalities were cho-
sen. Whenever the number of remaining municipalities in a service area was too small
for this rule to be feasible, the regulator decided how many municipalities each carrier
would have to choose. Figure 1 shows the result of this process. The figure shows a
map of the Brazilian midwest, color-coded according to the identity of the regulated
carrier. Each subdivision in the map is a municipality. The municipalities with no
color were not the subject of the 2012 coverage requirements. All the municipalities in
color had to be chosen by some carrier. The noteworthy feature of this figure is that
there is no obvious clustering; the municipalities where a firm is regulated are fairly
spread out over the map.

The main dataset used in this study comes from ANATEL, the Brazilian telecom-
munications regulator. The data records at a monthly frequency, for each of the 5,770
municipalities, and for each of the country’s mobile network operators whether or not
they provide 2G, 3G, and 4G service in that municipality.11 Figure 2 illustrates the
structure of the data. The figure shows mobile technology availability in the state of
Pará, a relatively poor northern state of Brazil. Each column of the figure corresponds
to one of the four major carriers in Brazil and each row corresponds to a year. Within
each map, the smaller subdivisions are municipalities in the state of Pará. Munic-
ipalities are color coded according to the most advanced technology offered by the
corresponding carrier in December of the corresponding year. Therefore, the map in
the first row and first column shows the technologies offered in each municipality of

11The data does not include MVNOs.
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Figure 1: Regulated Carriers – Midwest
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Figure 2: Technology availability in the state of Pará
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Figure 3: Subscribers by technology over time

The figure shows the total number of subscribers in the country, by technology. These quantities are
calculated from ANATEL’s data on subscription to mobile telecommunications services.

the state of Pará by the mobile service provider Claro in December 2013.
The second important piece of data coming from ANATEL is the identity of the

regulated firm in each municipality. Finally, ANATEL also provides data on subscrip-
tion to mobile telecommunications services. These data are available at the code area-
month-carrier-technology level12, starting in February 2005 and until December 2018.
Figure 3 shows the total number of subscribers in the country by technology for the
period Jan 2013-Dec 2018. The figure shows that 2G has been in decline over the pe-
riod, initially being overtaken by 3G. Moreover, 3G reaches a peak in the number of
subscribers towards the end of 2015, around the time when the growth of 4G acceler-
ates. To the extent that these patterns are driven by consumer preferences, they shape
firms’ incentives to introduce new technologies. The empirical model introduced be-
low will account for this pattern in demand by allowing the demand side parameters
to vary over time.

I complement the ANATEL data with a number of datasets from the Brazilian Cen-
sus. First, I utilize municipality demographics and characteristics, such as population,

12A code area in Brazil is much coarser than a municipality. There are 67 code areas in Brazil, and
5,770 municipalities.
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GDP per capita, and area. Summary statistics on these variables are shown in table
2. Second, I use the 2017-2018 Family Budget Survey13, which provides information
on households’ income and their expenditure on mobile telecommunications services,
among other household characteristics. Third, I use the 2010 Population Census to
obtain information on the distribution of individual level demographics at the munic-
ipality level.

Table 1: Summary Statistics – Municipality Characteristics

Variable N Mean Std. Dev. p10 p90

1 GDP Per Capita 972 10, 936.05 10, 016.44 4, 248.89 20, 573.72
2 Population 972 4, 724.12 2, 874.62 2, 171.06 8, 930.41
3 Area 972 1, 029.50 3, 799.37 90.34 1, 746.49

The data in this table comes from the Brazilian Census Bureau. GDP per capita is in
2010 BRLs. Area is in squared kilometers. The values of GDP per capita are averages
of data for 2010-2017, deflated to 2010 BRL. The values of population are averages of
2012-2019 data.

Table 2: Summary Statistics – Mobile Expenses and HH Characteristics

Variable N Mean Std. Dev. p10 p90

1 Mobile Spending 77, 655 88.23 166.48 6.74 259.82
2 HH Income PC 77, 655 1, 687.10 1, 556.25 507.56 3, 348.01
3 No. Residents 77, 655 2.21 1.04 1 4
4 Urban 77, 655 0.81 0.39 0 1

The data in this table comes from the 2017-2018 Family Budget Survey. The unit
of observation is an individual. Mobile spending is the total amount the individual
spent on mobile telecommunications. It is the sum of expenditures on voice and
data plans, pre-paid expenditure, and SIM cards. “HH Income PC” is the per capita
income in the individual’s household. “No. Residents” is the number of residents in
the individual’s household. “Urban” is a dummy that is equal to 1 if the individual
lives in an urban area.

I drop all code areas where any of the three smaller carriers had a market share of
at least 5% at any point in time. I then focus on the four major carriers. Moreover,
ANATEL provides two different sources of information on coverage requirements,
and I restrict attention to those municipalities for which the two sources of information
are consistent with one another. The resulting sample used in the structural analysis
contains 972 municipalities. Furthermore, because entering a market or upgrading a

13Pesquisa de Orçamentos Familiares.
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technology is a non-trivial investment that likely involves some time to build, I use
data on a semester frequency rather than monthly. The unit of observation is thus a
municipality-carrier-semester; there are 46,656 observations.

Table 3 shows summary statistics of the data, measured in June 2013 and December
2018, respectively. The tables show statistics for the number of active firms, the num-
ber of (firm, technology) pairs available (labeled “products” in the table), whether 3G
and 4G are available, and whether the regulated and some unregulated firm offer 3G
or 4G technology. In June 2013, there is on average just over 1 firm per market, and
about 1.4 products; 3G is available in 28% of municipalities and 4G is not available
anywhere. The regulated firm has adopted 3G technology in just over 20% of cases. In
7% of municipalities, an unregulated firm has adopted 3G.

Table 3: Summary Statistics

Panel A – June 2013

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Number of Firms 972 1.124 0.469 0 1 1 4
Number of Products 972 1.404 0.730 0 1 2 6
3G Available 972 0.277 0.448 0 0 1 1
4G Available 972 0.000 0.000 0 0 0 0
Regulated 3G+ 972 0.212 0.409 0 0 0 1
Unregulated 3G+ 972 0.068 0.252 0 0 0 1

Panel B – December 2018

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Number of Firms 972 1.665 0.655 0 1 2 4
Number of Products 972 3.188 1.550 0 2 4 10
3G Available 972 0.881 0.324 0 1 1 1
4G Available 972 0.580 0.494 0 0 1 1
Regulated 3G+ 972 0.807 0.395 0 1 1 1
Unregulated 3G+ 972 0.414 0.493 0 0 1 1

Summary statistics across the 972 municipalities in the sample, measured in June 2013 and
December 2018. Number of firms is the number of firms active in a municipality. Number of
products is the number of (firm,technology) pairs available in a municipality. 3G Available
is a dummy that is equal to 1 if at least one firm provides 3G service in the municipality. 4G
Available is defined analogously, but for 4G technology. Regulated 3G+ is a dummy that is
equal to 1 if the regulated firm provides either 3G or 4G service in the municipality. Unreg-
ulated 3G+ is a dummy that is equal to 1 if some unregulated firm provides either 3G or 4G
service in the municipality.

By December 2018, there are just under 1.7 firms per municipality, with about 3.2
products. By December 2018, 3G has reached 88% of municipalities, whereas 4G has
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reached just under 60% of municipalities. The diffusion of new mobile technologies is
driven mostly by regulated firms, but the contribution of unregulated firms is far from
negligible: by December 2018, regulated firms have introduced 3G technology (or 4G)
in just over 80% of the municipalities in the sample; in 41% of those municipalities, at
least one unregulated firm has introduced 3G technology or better.

The descriptive statistics in table 3 suggest an important role for coverage require-
ments in explaining the diffusion of new mobile telecommunications technologies:
regulated firms introduce 3G technology (or better) at a faster pace than unregulated
firms. This difference is potentially composed of two different effects of coverage re-
quirements: a positive effect on regulated firms and a negative effect on unregulated
firms. Unregulated firms may be less likely to enter new markets or upgrade their
technologies because they know that the regulated firm will introduce 3G by the re-
quirement deadline. This implies that the market will be more competitive in the fu-
ture, reducing the incentives for the unregulated firm to enter the market or upgrade
its technology.

The data allow me to investigate these positive and negative mechanisms further. I
estimate logit models of entry and technology upgrade decisions, which are reported
in table 4. These models use data on all municipalities with a 3G coverage require-
ment. An observation in these models is a firm-municipality-date triple. The key
explanatory variables in these models are the dummy variables “Regulated”, “Regu-
lated Competitor - Out”, and “Regulated Competitor - 2G”. The first of these variables
is equal to 1 when the firm is regulated, and 0 otherwise. The second variable is equal
to 1 when the firm faces a regulated competitor that is out of the market. The third
variable is equal to 1 when the firm faces a regulated competitor that has 2G technol-
ogy. The omitted case is when no firm is subject to the regulation14. The models also
control for the municipality’s GDP per capita, population, and area, and also include
the number of competitors with each technology.15 Moreover, to account for unob-

14To be precise, the ommitted case pools together observations where either the regulated firm has
satisfied its coverage requirement or the regulated firm is one of the small firms. Because I restrict the
sample to regions where the small firms have always had negligible market shares, I interpret both
situations as there being no firm subject to the regulation.

15It may also be expected that a firm’s network infrastructure in neighboring municipalities is im-
portant for the their choices. I test for that in Appendix B. There I do find that having service in a
neighboring municipality increases the probability of entry and technology upgrade. However, the in-
clusion of those variables changes the estimated coefficients on the other variables only slightly, if at
all. This suggests that the choice of the regulated firm is uncorrelated with their local network infras-
tructure. Characteristics of a firm’s network in neighboring municipalities will not be included in the
structural model, as doing so would increase the computational burden by several orders of magnitude.
The descriptive results discussed here, however, suggest that this omission will not bias my inference
regarding the effect of coverage requirements.
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served municipality level heterogeneity, these models also include group fixed effects,
where the groups are defined by a heuristic approach explained in detail in the Section
4.16

Each column in Table 4 corresponds to a different state for the firms included in
the sample. The first column includes only observations such that the corresponding
firm is not active and includes only data for the years 2013-2015; the second column
includes only observations such that the firm is inactive and only data for 2016-2018;
the third column includes observations such that the firm offers only 2G technology
and data for 2013-2015; the samples for the remaining two columns are similarly de-
fined. The dependent variable for columns 1 and 2 is a dummy that is equal to 1 if
the firm enters the market in the next period; the dependent variable for the remain-
ing columns is a dummy that is equal to 1 if the firm upgrades its technology in the
following period. There are two key results in Table 4. First, regulated firms that have
not satisfied their coverage requirements are more likely to enter the market and up-
grade their technologies than unregulated firms. Second, unregulated firms are less
likely to enter and upgrade their technologies when the regulated competitor is either
out of the market or has 2G technology. These results show that the regulation indeed
accelerates the introduction of the new technology by regulated firms, but also that it
delays the introduction of new technologies by unregulated firms, which is evidence of
the entry deterrence effects outlined in the introduction. Determining which of these
two effects dominates and whether or not coverage requirements accelerate the intro-
duction of new technologies is part of the analysis to follow.

The rest of the paper is concerned with developing tools that allows us to quantify
the net effect of coverage requirements on the time to adoption of new mobile telecom-
munications technologies, as well as the entry deterrence effects alluded to above and
the costs that the regulation imposes on firms. This requires, we will need a model
of how firms make their entry and upgrade decisions. That is the topic of the next
section.

3 Model

In this section, I introduce an empirical model of mobile service providers’ decisions
to enter a market and upgrade their technologies. The model operates at the level of

16The group fixed effects affect the coefficients on the numbers of competitors the most. The other
coefficients change only slightly with their introduction. Appendix B shows the results obtaining esti-
mating these models without the group fixed effects.
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Table 4: Entry/Upgrade Models

Dependent variable:

Upgrade
Out 13-15 Out 16-18 2G 13-15 2G 16-18 3G

(1) (2) (3) (4) (5)

Log GDP PC 1.750∗∗∗ 0.970∗∗∗ 0.685∗∗∗ 0.195∗∗∗ 0.181∗∗∗

(0.091) (0.118) (0.066) (0.071) (0.038)

Log Pop. 2.495∗∗∗ 1.997∗∗∗ 1.324∗∗∗ 0.945∗∗∗ −0.073
(0.104) (0.147) (0.072) (0.083) (0.045)

Log Area −0.507∗∗∗ −0.386∗∗∗ −0.291∗∗∗ −0.322∗∗∗ 0.018
(0.037) (0.050) (0.026) (0.030) (0.019)

Regulated 1.735∗∗∗ 2.192∗∗∗ 2.127∗∗∗ 0.870∗∗∗ −0.397∗∗∗

(0.108) (0.126) (0.076) (0.107) (0.040)

Regulated Competitor - Out −0.705∗∗∗ −1.082∗∗∗ 0.116 −0.341∗∗ −0.162
(0.172) (0.284) (0.151) (0.165) (0.133)

Regulated Competitor - 2G 0.103 −0.101 −0.522∗∗∗ −1.199∗∗∗ −2.333∗∗∗

(0.112) (0.192) (0.121) (0.316) (0.235)

No. Competitors 2G −1.345∗∗∗ −1.043∗∗∗ −0.422∗∗∗ −0.238∗∗∗ −0.064∗

(0.093) (0.117) (0.055) (0.067) (0.038)

No. Competitors 3G −1.937∗∗∗ −2.179∗∗∗ −0.598∗∗∗ −0.578∗∗∗ 0.211∗∗∗

(0.120) (0.144) (0.082) (0.086) (0.047)

No. Competitors 4G −1.472 −1.534∗∗∗ −2.000∗∗∗ −0.889∗∗∗ 0.426∗∗∗

(1.036) (0.151) (0.723) (0.089) (0.047)

Group FE Yes Yes Yes Yes Yes
Observations 36,230 31,620 24,753 14,002 39,923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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a municipality. In the model, firms’ flow profits depend on their own technologies,
their competitors’ technologies, and the local distribution of consumers’ demographic
characteristics. Inactive firms make irreversible entry decisions, and both entrants and
incumbents choose what technologies to offer in the market; firms incur sunk costs of
entry and technology upgrade. Because one of the goals of this paper is to under-
stand the effectiveness of coverage requirements as a tool to accelerate the diffusion
of new mobile telecommunications technologies, coverage requirements are explicitly
modeled. In each market a single firm is required to provide 3G technology by an
exogenously specified deadline. If it fails to do so, it pays a fine every period, until it
does introduce 3G technology into the market.

There are four carriers in each market. The four carriers compete by choosing
which technology to operate, if any. The available technologies are 2G, 3G, and 4G.
I assume that firms offer every technology less advanced than their best technology.17

Time is discrete and the horizon is infinite. Within a period, the timing of the game is
as follows. In the beginning of each period t incumbent firms earn their flow profits.
Each firm then privately observes action-specific cost shocks, and firms simultane-
ously decide which of the available actions to take. Potential entrants can enter with
any technology and incumbents can choose to upgrade to any technology that is more
advanced than their current technology. After choosing an action, firms pay the asso-
ciated costs. Technologies change deterministically according to firms’ decisions.

Let sfmt denote firm f ’s technology in marketm and period t: sfmt ∈ S := {0, 2, 3, 4},
where sfmt = 0 denotes that firm f is out of the market and the other values correspond
to each of the available technologies, namely 2G, 3G, and 4G. The market’s technolog-
ical state smt ∈ S4 is a vector recording each firm’s technology. Firms’ flow profits are
given by a time-varying function of the market’s technological state s and the distri-
bution Hm

x of demographics x in market m: πt(s,Hm
x ). The specification of πt is given

in subsection 3.3.
Entry and upgrade are costly. I will allow the costs of technology introduction to

vary over time in a coarse manner. I group periods into two phases; an early phase
denotedE (up to and including December 2015) and a later phase denoted L (after De-
cember 2015). This allows the model to capture firms’ incentives to wait for costs to de-
crease before introducing a new technology. I will denote by p(t) the phase associated
with period t. I model the costs of deploying each technology as a technology-phase

17This assumption is broadly consistent with the data. Mobile service providers typically keep old
technologies in place as a fallback option. This assumption also reduces the dimension of the state space
considerably, making the model computationally tractable.
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specific linear function of market characteristics, zm. Specifically, costs are modeled as

ct (a, sfmt, zm, ε) =

−ε(a) if a = sfmt∑a
{g′:g′>sfmt} z

′
mθg′,p(t) + 1 (sfmt = 0) z′mθe − ε(a) if a > sfmt

(1)

In equation 1, a ∈ {sfmt, . . . , 4} is the action chosen by the firm and ε(a) is an action-
specific cost shock; ε is a vector collecting all the ε(a). If a = sfmt, the firm pays no costs
(other than receiving the cost shock). A potential entrant that decides to enter pays an
entry cost z′mθe. Moreover, associated with every technology g there are installation
costs z′mθg,p(t). One can interpret z′mθe as the cost of installing basic infrastructure, such
as cell phone towers. Because it is associated with basic infrastructure, this cost does
not vary over time. The term z′mθg,p(t) captures the cost of installing technology-specific
infrastructure, such as radios that only transmit 3G or 4G signal. Because this term is
associated with new technologies, it is allowed to vary over time. In equation (1), zm is
a vector of observed market characteristics and the θ’s are parameters to be estimated.
The summation in equation (1) reflects the previous assumption that firms offer all
technologies less advanced than their best technology. If, for example, a firm’s current
best technology is 2G, and that firm upgrades to 4G, equation (1) says that the firm will
pay the costs of installing both 3G and 4G.18 The cost shocks are assumed to follow a
Type 1 Extreme Value distribution with scale parameter σ, and they are iid across
firms, periods, and actions.

In each market m, exactly one firm is required to provide 3G service or better by
a date Tm exogenously specified by the regulator.19 I will call that firm the regulated
or committed firm and the other firms the unregulated or uncommitted firms. If the reg-
ulated firm fails to provide at least 3G service by the date Tm, it pays a fine ϕ every
period, starting in Tm + 1 and until it deploys either 3G or 4G.

Firms choose their actions to maximize their discounted expected profits, taking
their competitors’ behavior as given. I focus on Markov Perfect Equilibria (MPE), as is
typical in empirical applications of dynamic games. I allow regulated and unregulated
firms to behave differently, but beyond that I impose symmetry.

There are two sources of non-stationarity in this environment. First, flow profits
and entry and technology upgrade costs vary over time. Second, coverage require-
ments also imply that firm behavior depends on the date. Suppose that the regulated

18Note that this implies that an entering firm will always offer 2G. Because the cost of installing 2G
is only paid by an entering firm, θe and θ2G will not be separately identified. Therefore, in estimation I
drop θ2G. The estimate of θe thus includes both entry costs and 2G installation costs.

19In the empirical application, Tm is always equal to December 31, 2019.
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firm has not satisfied its commitment and t < Tm; as time goes by, the regulated firm
gets closer to being fined and therefore should become more likely to introduce 3G
technology. Conditional choice probabilities thus change over time. I now discuss
symmetry and non-stationarity in turn.

3.1 Symmetric Markov Perfect Equilibria

A Markov Perfect Equilibrium is a strategy profile (σ1, . . . , σ4), such that σi is a func-
tion that maps a firm’s state variables into a feasible action. In a symmetric Markov
Perfect Equilibrium, strategies don’t depend on firms’ identities. Instead, I define
value and policy functions for regulated and unregulated firms. To simplify the no-
tation, I subsume all the market-specific variables that do not vary over time in a su-
perscript. The state of an unregulated firm is (s1, sr, s−, t, ε), where s1 is that firm’s
technology, sr is the technology of the regulated firm, and s− is a vector with the tech-
nologies of the other two firms. The state of a regulated firm is (s1, s−, t, ε) where
now s− denotes the technologies of the three remaining firms. Let Ω0,Ω1 denote the
state space for unregulated and regulated firms, respectively, with typical element
ωr, r ∈ {0, 1}. A strategy is a function σr : Ωr → {0, 2, 3, 4} satisfying the restric-
tion that σr(ωr) ∈ A(s1(ωr)) := {s1(ωr), . . . , 4}, where s1(ωr) is the first coordinate of
ωr.20

Let σm = (σm0 , σ
m
1 ) be a symmetric strategy profile. Define the implied ex-ante

value function

V m
r,σ(s, t) := Eε

{ ∞∑
τ=t

δτ−t
[
πmτ (sfτ , s−f,τ )− cmτ (afτ , sfτ ) +

+εfτ (aτ )− ϕr1 (Tm < τ, sfτ < 3)
]∣∣∣r, s, t;σ}

where Eε indicates that the expectation is taken over the sequence of ε’s for all firms;
firms’ states evolve according to (σm0 , σ

m
1 ).

Symmetry implies restrictions on σ0, σ1, V0, V1. For example, for a regulated firm,
it is irrelevant whether s− = (3, 2, 1) or s− = (1, 2, 3). Therefore V1(s1, 3, 2, 1) =

V1(s1, 1, 2, 3) and similarly for the policy function σ1. Similar restrictions apply to un-
regulated firms. Furthermore, symmetry implies that V0 and V1 are equal for some

20The idiosyncratic nature of the regulated firm’s technology is the reason why I don’t define the
state variable to be given by the number of competitors with each technology. The model could be
equivalently represented in that way, but given that it is necessary to keep track of the regulated firm’s
technology, it is simpler to keep track of all firms technologies and impose the appropriate symmetry
conditions.
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states. For example, suppose that sj = sr ≥ 3. Then V0(sj, sr, s−) = V1(sr, sj, s−). Sym-
metry implies further restrictions on value and policy functions. Appendix C presents
all of those restrictions and how they’re used to efficiently represent firms’ state spaces.

Finally, note that the recursive characterization of Markov Perfect Equilibria (e.g.,
Doraszelski and Escobar (2010)) implies that {σm0 , σm1 } is a MPE if and only if

σmr (s, t, ε) = argmax
a∈A(sf)

{
πmt (sft, s−f,t)−cmt (a, sf )+δEε−f

[
V m
r,σ

(
a, s′−f , t+ 1

)
|r, s, t

]
+ε(a)

}
(2)

where, for firms h 6= f , s′h = σmrh(s, t, εh) and the expectation is with respect to the
shocks εh of firms h 6= f .

3.2 Quasi-Stationary Markov Perfect Equilibria

As discussed above, there are two sources of non-stationarity in this environment.
First, flow profits and cost parameters change over time. Second, coverage require-
ments imply that firms’ policy functions respond to the proximity of the requirement
expiration date Tm. In this subsection, I introduce assumtions that accommodate these
two sources of non-stationarity, but impose a degree of stationarity.

The specification of entry and technology upgrade costs assumes that those costs
eventually stabilize.21 I will assume the same of flow profits. Specifically, I assume that
flow profits vary in a way known to the firms from the start of my sample until the
beginning of 2018, after which they stabilize. I then make two assumptions regarding
equilibrium behavior. First, after parameters have stabilized and the expiration date of
the coverage requirement has passed, behavior doesn’t depend on the date anymore.
Second, the same is true if parameters have stabilized and the committed firm has
satisfied its commitment.

Formally, I focus on Quasi-stationary Symmetric Markov Perfect Equilibria, defined
below. Let Tθ denote the earliest time period such that flow profits and costs do not
vary after Tθ.

Definition 1. A Symmetric Markov Perfect Equilibrium (σ0, σ1) is said to be quasi-
stationary if there exist functions σ̃r(s, ε), r ∈ {0, 1}, such that, if either

(i) t ≥ max{Tm + 1, Tθ}, or

(ii) t ≥ Tθ and sr ≥ 3,

21Entry and technology upgrade costs vary between the early and the late phases, but do not change
after that.
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then σr(s, t, ε) = σ̃r(s, ε).

I assume throughout that the data is generated by a Quasi-Stationary Symmet-
ric Markov Perfect Equilibrium. Note that this imposes restrictions on value func-
tions over time. For example, if t ≥ Tθ and sj = sr ≥ 3, then V1(sr, sj, s−, t) =

V0(sj, sr, s−, t+1). Essentially, the model has a non-stationary phase followed by a sta-
tionary phase. Models of technology adoption must somehow contend with the fact
that the demand for and costs of adopting a new technology vary over time. One way
of dealing with the time-varying nature of demand and costs that appears in the liter-
ature is to assume a finite horizon and solve the game played by firms via backward
induction; see, e.g., Igami (2017). That method raises the issue of assigning continu-
ation values to different industry states in the final time period. In Igami (2017), that
is done by assuming that the state of the industry doesn’t change after the terminal
period, and computing the implied discounted stream of profits. Quasi-stationarity
instead assumes that firms will keep playing the entry and technology upgrade game
forever, so that firms’ continuation values are given by the equilibrium value function
in the relevant states. The empirical feasibility of this assumption rests on observing a
cross-section of markets.

3.3 Modeling Flow Profits

It is not uncommon in applications of dynamic games for flow profits to be derived
from an estimated demand system paired with an assumption on firms’ pricing be-
havior. Following that route would require data on available plans, their prices, and
consumers’ choices from the available plans. Unfortunately, such data is not available
in my setting. I thus follow a different approach. Suppose that consumer i in mar-
ket m with demographic characteristics xi chooses what carrier to subscribe to, what
technology to use, and how much to spend on mobile telecommunications services,
ei. Let σfgt(s,H) be the resulting market share of firm-technology pair (f, g) in period
t when the industry state is s and the distribution of demographics is H ; a model for
σfgt will be specified below. Let M be the size of the market and, as before, let sf be
firm f ’s state.22 Finally, denote by E[ei|g] the expectation of consumers’ expenditures
ei, conditional on a consumer choosing technology g.23 Firms’ profits are then given

22I set the market size to be twice the population of the municipality. The number of mobile telecom-
munications subscriptions in Brazil is larger than the population.

23Here I condition only on the chosen technology, and not on the firm identity, because firms are
assumed throughout to be symmetric.
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by24:

πt(sf , s−f , H) = M
∑
g∈sf

σfgt(s,H) (Et[ei|g] + ψ) (3)

= M
∑
g∈sf

σfgt(s,H)

(∫
E[ei|g, xi]dHt(xi|g) + ψ

)

The summation over g ∈ sf indicates that we sum over all technologies offered by firm
f : {g : 0 < g ≤ sf}. The parameter ψ captures revenues that the expenditure model
may fail to account for and marginal costs of serving customers. In estimation, I will
allow ψ to vary by groups of markets; see section 4 for details. Note that in equation
(3), the conditional distribution Ht(xi|g) is indexed by t. That is because consumers’
preferences over technologies are allowed to vary over time (as indicated by the t

subscripts in σfgt), so that the distribution of demographics conditional on technology
choice also varies over time.

The main data limitation I face is that I never observe consumer expenditures to-
gether with their technology (and carrier) choices. I will therefore make the following
assumption:

Assumption 1. E[ei|g, xi] = E[ei|xi].

This assumption says that conditional on individual characteristics xi, consumer
expenditure is mean independent of the technology chosen by that consumer. This is,
admittedly, a strong assumption. It would hold, e.g., in a world in which consumers
pay per usage (a popular model in Brazil), and technology doesn’t affect usage. This
assumption would fail if better technologies induce consumers to utilize more data.
Assumption 1 would thus be untenable if we were dealing with a population that
uses high-bandwith applications. Because we are dealing with small, rural municipal-
ities in Brazil, the assumption is more palatable. Importantly, note that Assumption 1
does not imply that consumers that subscribe to different technologies will spend (on
average) the same amount, for individuals with different demographic characteristics
are still allowed to sort into different technologies.

24The expression in the right hand side of 3 is an approximation. Firms’ profits are equal to∑
g∈sf

∑
i∈fg ei, where the summations are over the technologies offered by firm f and over individuals

i subscribing to firm-technology pair (f, g). This approximation holds in the sense that the difference
between firms’ profits and the right hand side of equation 3 is Op(

√
M), whereas the included term

is O(M). This implies that the approximation error becomes negligible relative to the included term
for large M . This approximation is analogous to the (implicit) approximation to profit functions used
routinely in supply and demand models in empirical industrial organization.

23



Assumption 1 and equation 3 imply that

πt(s,H) = M
∑
g∈sf

σfgt(s,H)

(∫
E[ei|xi]dHt(xi|g) + ψ

)
(4)

I model σfgt(s,H) as arising from a nested logit model. Specifically, consumer i’s
utility of subscribing to firm-technology pair j = (f, g) in marketm and year τ is given
by25

uijmτ = γr(m),p(τ) + µg(j),p(τ) + βg(j),p(τ)ymτ + θg(j),p(τ)dmτ︸ ︷︷ ︸
vg(j)mτ

+ξjmτ + ζimτ (λ) + (1− λ)εijmτ

(5)
where r(m) is the state of municiality m, p(τ) is the phase (early or late) associated
with year τ , ymτ is GDP per capita, and dmτ is population density.26 The term ξjmτ is an
unobserved product characteristic, ζimτ (σ) is a disturbance common to all goods other
than the outside good, and εijmτ is a Type 1 Extreme Value shock. The parameter λ is
the nesting parameter, and ζimτ (λ) has the unique distribution such that [ζimτ (λ)+(1−
λ)εijmτ ] also has an extreme value distribution (see Cardell (1997)).

In equation (5), γr(m),p(τ) is a state-phase fixed effect meant to capture variation
in the share of the outside good; µg(j),p(τ) is a technology-phase fixed effect, which
captures changes in the popularity of each technology over time; and the effect of
income and population density on consumer preferences is also allowed to vary by
technology and phase.

The distributional assumptions above imply that market shares are given by

σjmτ (s, vmτ , ξmτ ) =
e(vg(j)mτ+ξjmτ )/(1−λ)

D
× D1−λ

1 +D1−λ (6)

where vm,τ is a vector collecting the vgmτ , ξmτ is a vector similarly defined, and D :=∑
j∈s e

(vg(j)mτ+ξjmτ )/(1−λ), where the summation is over the products offered in the mar-
ket, which are encoded in the industry state s. The predicted quantity of subscribers
is Mσjmτ (s).

25I specify equation 5 at the year level because the demographic variables in it are observed with that
frequency. A period in the model, which corresponds to six months, is mapped to its corresponding
year and the choice model introduced in the text is used to compute market shares.

26Ideally, yi should be used in equation 5. That would add one more integration in the estimation
routine. Doing so is work in progress. In the analysis that follows, when calculating H(x|g), I will treat
the coefficient on ymτ as the effect of an individual’s income on her utility.
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It remains to model E[ei|xi]. I assume that individual i’s, ei, is given by

log(ei) = αr(i)u + α1 log(yi) + α2ni + ηi (7)

In equation (7), r(i) indicates i’s state of residence; u indicates whether the munici-
pality is classified as urban or rural by the Census; yi is income; ni is the number of
residents in i’s household; and ηi is an error term that is uncorrelated with the in-
cluded regressors. We now have all the ingredients needed to compute firms’ profits
in equation 4, except for the distribution H(xi|g). I obtain that distribution using the
technology choice model outlined above and Census data on municipality-level de-
mographics; for details, see section 4.

The final aspect of the model is an assumption regarding the distribution of ξjmτ .
I introduce this assumption to deal with the fact that the I observe the quantities of
subscribers at different levels of geographic granularity over time; see section 4 for
details.

Assumption 2. Let c(m) denote the area-code that municipality m belongs to. The
unobserved product characteristic ξjmτ satisfies

ξjmτ = ξjc(m)τ + ηjmτ

where ηjmτ
iid∼ F .

Assumption 2 says that ξjmτ can be decomposed into a random variable that varies
only with area-code, on which I place no restrictions, and another RV that varies across
municipalities within an area-code, that I assume is iid with some unrestricted distri-
bution F .

Under Assumption 2, an argument relying on a large number of municipalities
within an area-code implies that

σjcτ =
∑
m∈c

ωm

∫
σjmτ (smτ , vmτ , ξc(m),τ , ηmτ ; θ)dF (ηmτ ) (8)

holds approximately.27 In equation (8), ωm is the fraction of the population in area-code
c in municipality m. I will use equation (8) in estimation; see section 4.

27See Appendix ?? for details.
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4 Identification and Estimation

I start this section by discussing the estimation of the flow profit function in subsection
4.1. In subsection 4.2 I discuss the estimation of the dynamic parameters of the model,
i.e., the entry and upgrade costs and the fine for non-compliance with the regulation.

4.1 Estimation of the Flow Profit Function

The flow profit function is given by equation (4). Computing profits requires four
objects: σfgt(s,H), E[ei|xi], Ht(xi|g), and ψ. In this subsection, I discuss the estimation
of the first three of these objects.

The first task is to estimate the parameters underlying the market share terms,
σfgt(s,H). Here I have to deal with the fact the data on mobile subscriptions come
at different levels of geographic granularity over time. First, equation (6) implies the
usual analytical nested logit inversion (see Berry (1994)):

log(sjmt)− log(s0mt) = vg(j)mt + λ log(sj|Jmt) + ξjmt (9)

where log(sj|Jmt) is the share of good j in the total number of subscriptions in the
market. This equation yields ξjmt as a function of data and parameters, ξjmt(θ). I
interact ξjmt(θ) with instruments to form moment conditions E[ξjmt(θ)Z

1
jmt] = 0.

The intuition for the identification of the nesting parameter λ is similar to that in
Berry and Waldfogel (1999). The nesting parameter determines the extent of business
stealing when a new product enters the market. If we can exogenously vary the num-
ber of products in the market, we learn the value of λ by observing the effect on the
aggregate share of the goods in the market. Following this intuition, I use as instru-
ments for log(sj|Jmt), the logarithm of the area of municipality m, and dummies for
whether or not the municipality is one of the regulated ones, interacted with the regu-
lation deadline. The area of a municipality increases the cost of providing service, and
thus reduces the number of products in the market. Regulated municipalities with
early regulation deadlines will tend to have more products than regulated municipal-
ities with later deadlines. The identifying assumption is that the regulation deadlines
are uncorrelated with unobservable product characteristics in 2019. I also use the de-
mographic variables in vjmt as instruments.

The moments discussed above are informative about the nesting parameter and
preference parameters in the later period of the data, but not about preference parame-
ters in the earlier period of the data. To construct additional moments to identify those
parameters, I leverage assumption 2 and equation (8). Equation (8), repeated here for
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convenience, states that market shares at the area-code level are approximately given
by

σjct =
∑
m∈c

ωm

∫
σjmt(smt, vmt, ξc(m),t, ηmt; θ)dF (ηmt) (10)

Equating observed market shares at the area-code level with their predicted counter-
parts, given by the right hand side of equation 11, allows one to solve for ξjct as a func-
tion of all the utility parameters. These structural error terms, ξjct(θ), could then be
interacted with instruments to form moment conditions of the form E[ξjct(θ)Z

2
jct] = 0.

The one hindrance to that approach is the integration with respect to F (ηjmt). Here,
again, assumption 2 offers a solution. Given any vector of structural parameters, θ,
equation (9) gives us ξjmt(θ). We can then make use of assumption 2 to recover ηjmt(θ),
which gives us an empirical distribution of ηjmt given θ, F (η; θ). In this way, the in-
tegration in equation (11) can be performed for any guess of θ by sampling from the
implied F (η; θ), and moment conditions can be formed as outlined above.

To summarise the preceding discussion, the steps involved in evaluating the GMM
objective function for a given value of θ are as follows. First, use equation (9) to obtain
ξjmt(θ). Second, use assumption 2 to obtain ηjmt(θ). Third, solve for ξjct(θ) from

sjct =
∑
m∈c

ωm
1

Ns

Ns∑
i=1

σjmt(smt, vmt, ξc(m),t, ηi; θ) (11)

where sjct is the observed market share of firm-technology pair j in area-code c and
period t, ηi is a vector of |Jmt| independent draws from F (η; θ) andNs is the number of
simulation draws. Fourth, interact ξjmt with Z1

jmt and ξjct with Z2
jct and average, to get

sample analogs of the moment conditions discussed above; call these sample analogs
ḡ1(θ) and ḡ2(θ), respectively. For a chosen weight matrixW , the GMM objective is then
given by

J(θ) :=
(
ḡ1(θ)′ ḡ2(θ)′

)
W

(
ḡ1(θ)

ḡ2(θ)

)
(12)

The GMM estimator is, as usual, θ̂ := argminθ J(θ). I have discussed the instruments
Z1
jct above. The instruments Z2

jct used in estimation are the population-weighted aver-
ages of the demographics included in vgmt. I use the identity matrix as the weighting
matrix in estimation.

The term E[ei|xi] in equation (4) is calculated from equation (7), which is estimated
by ordinaty least squares using the Household Budget Survey. From (7) it follows
that E[eim|xi] = exp(αr(m)u + α2ni)y

α
i E[exp(ηim)|xi]. I assume that exp(ηim) is mean

independent of xi and estimate E[exp(ηim)] using the residuals from equation (7).
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The last ingredient needed to use equation (4) is the conditional distributionH(xi|g).
By Bayes’ rule,

h(xi|g) =
σ(g|xi)h(xi)∫
σ(g|x′i)h(x′i)dx

′
i

(13)

The term σ(g|xi) is derived from the technology choice model; the unconditional dis-
tribution of xi comes from the Census data. I obtain h(xi|g) by drawing a uniform
random sample from the municipality-level Census data, computing σ(g|xi) for each
drawn xi, and calculating σ(g|xi)/

∑
j σ(g|xj).

The final object in equation (4) is the parameter ψ. I will allow the value of ψ to
vary across five groups of municipalities. Those groups are determined in the follow-
ing heuristic way. First, I project the number of firm-technology pairs in municipality
m and period t onto municipality and time dummies. Next, I run a linear regression
of the estimated municipality fixed effects on averages over time of the municipality
characteristics included in the structural model. The residuals from these regressions
can be thought of as time-invariant unobserved factors that determine the number of
products in a market, and hence are related to profitability in that market. I group mu-
nicipalities according to the quintiles of the distribution of these residuals and estimate
a ψ for each group. These parameters will be estimated together with the dynamic pa-
rameters of the model. That is the topic of the next subsection.28

4.2 Identification and Estimation of Dynamic Parameters

The flow payoffs of the dynamic game introduced in the previous section are linear in
the structural parameters. For this class of models (dynamic games with linear flow
payoffs), it is possible to show that structural parameters are identified if conditional
choice probabilities are identified.29 The requirement that conditional choice proba-
bilities be identified excludes from this result general models with unobserved state
variables However, this result encompasses models where the unobserved state vari-
ables possess a group structure and that group structure can be recovered from the

28The heuristic procedure discussed in this subsection is related to approaches taken by Collard-
Wexler (2013) and Sanches, Silva-Junior, and Srisuma (2018) to account for unobserved heterogeneity.
A recent literature in econometrics has introduced methods to deal with group fixed effects in panel
data and structural models. On this, see, e.g., Bonhomme and Manresa (2015), Bonhomme, Lamadon,
and Manresa (2017), and Cheng, Schorfheide, and Shao (2019). It is possible that those methods can
be adapted to deal with group-level unobserved heterogeneity in dynamic games. A more common
approach of dealing with market-level unobserved heterogeneity would be to apply an EM-type algo-
rithm. That approach, however, would require making the strong assumption that unobserved hetero-
geneity is independent across markets, which seems unlikely in the present case.

29This is a known result, see, e.g., Aguirregabiria and Nevo (2013). I review the argument here for
completeness.
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data in a first stage, as is assumed here.
The conditional value functions inherit the linearity from the flow payoffs: there

exist functions frt,Pm(a, s) and grt,Pm(a, s, z) such that

vmr,t(a, s)

σ
= frt,Pm(a, s) + grt,Pm(a, s, z)σ−1Ψ

where Ψ is a vector collecting all structural parameters (see Appendix D for details).
This fact can be used to establish identification.

Since the idiosyncratic errors follow a Type 1 Extreme Value distribution, the con-
ditional choice probabilities have the logit form:

Pm(a|s, r, t) =
exp(vmr,t(a, s)/σ)∑

a′∈A(sf ) exp(vmr,t(a
′, s)/σ)

We can apply the usual logit inversion to this equation to obtain:

ln(Pm(a|s, r, t))− ln(Pm(sf |s, r, t)) =
vmr,t(a, s)

σ
−
vmr,t(sf , s)

σ

Using the linear representation of the conditional value functions we can then write

ln(Pm(a|s, r, t))−ln(Pm(sf |s, r, t))−frt,Pm(a, s)−frt,Pm(sf , s) =

[
grt,Pm(a, s, z)−grt,Pm(sf , s, z)

]′
ψ

σ
(14)

Equation (14) leads to an OLS-like formula for ψ/σ.30

The intuition for identification is that the structural parameters are identified by
exogenous variation in (πm, zm, s, r, t) and the fact that we observe how firms respond
to this variation (i.e., we observe conditional choice probabilities). One can, for exam-
ple, entertain the thought experiment of varying one of the exogenous covariates and
observing how the behavior of firms changes. If we vary the distribution of income,
for example, flow profits will vary; the extent to which firms respond in their entry and
upgrade behavior is informative about the costs of such actions.31 The fine parame-

30This argument has used market-specific CCPs Pm. This is not necessarily inconsistent with the
typical assumption that a unique equilibrium is played in the data, as one can simply enlarge the state
space to include market-level characteristics and define policy functions on that domain. Either way,
those CCPs must be estimable from data, and we therefore require that the equilibria played in the data
(or the unique equilibrium defined on an enlarged state space) vary continusouly with the market-level
characteristics.

31Although useful, this intuition is slightly imprecise. When we vary the distribution of income,
the endogenous conditional choice probabilities Pm will also change, thus changing the other terms in
wmrt,Pm(a, s, zm). This makes clear that functional form assumptions play a role in obtaining identifica-
tion in dynamic games, which is why all empirical models in this literature are tightly parameterized.
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ter ϕ is identified by the difference in behavior between regulated and unregulated
firms. Time variation provides additional variation to identify ϕ. Intuitively, for small
ϕ the behavior of regulated firms will change only slightly as the regulation deadline
approaches; large ϕ, on the other hand, should lead to larger changes in behavior.

4.3 Estimation

I apply the Nested Pseudo Likelihood (NPL) algorithm of Aguirregabiria and Mira
(2007) to estimate the dynamic parameters. In light of the results of Pesendorfer and
Schmidt-Dengler (2010), my choice of estimator requires some justification. A popu-
lar alternative is to use a two-step estimator, e.g. Bajari, Benkard, and Levin (2007),
Pakes et al. (2007) or Pesendorfer and Schmidt-Dengler (2008). These estimators all
proceed by flexibly estimating policy functions in a first stage and then using those
policy functions to construct a second-stage objective function that is then minimized
to yield structural estimates. Because my model features substantial non-stationarity,
it would be challenging to obtain flexible and accurate first stage estimates of policy
functions. For this reason, I opt to use an estimator that makes full use of the already
imposed structural assumptions.

As is well known, the computational cost of the maximum likelihood estimator
is prohibitive in the case of dynamic games. I thus adopt Aguirregabiria and Mira
(2007). An alternative that was recently proposed is Dearing and Blevins (2019). The
estimator proposed by Dearing and Blevins (2019) enjoys good theoretical properties.
In particular, it is guaranteed to converge, thus overcoming the main issue raised of
NPL raised by Pesendorfer and Schmidt-Dengler (2010). However, the algorithm in
Dearing and Blevins (2019) requires solving large systems of linear equations, which
renders its application to the empirical setting in this paper substantially more costly
than Aguirregabiria and Mira (2007).

A Nested Pseudo Likelihood (NPL) fixed point is a pair (θ̃, {P̃m}m) that satisfies

(i) θ̃ = argmaxθ
∑

m,t,f ln Ψ(afmt|smt, rfm, t,m; θ, P̃m)

(ii) P̃m = Ψ(P̃m; θ̃) for all m

The NPL estimator is the NPL fixed point with the maximum value of the pseudo-
likelihood. The set of NPL fixed points is known to be non-empty. However, it need
not be a singleton. This implies that the researcher must explore the parameter space
to ensure that the pseudo-likelihood is being maximized in the set of NPL fixed points.

In practice, one finds NPL fixed points via an iterative algorithm. Starting with a
guess for CCPs, {P̃m}m, the implied pseudo likelihood is maximized (see condition (i)
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above). One then uses the resulting guess for θ to update firms’ CCPs (see condition
(ii)) above. These two steps are repeated until the CCPs or the structural parameters
converge.

5 Estimation Results

Table 5 presents the estimates of the static parameters, those in the market shares and
expenditure functions. The results show that the market share of 4G is, in both the
early and the later periods, the most responsive to income, suggesting that richer indi-
viduals have higher demand for high-bandwith uses of mobile communications. The
market share of 4G also grows the most with population density in the earlier part
of the sample. This is consistent with individuals in more densely populated areas
having more social connections and therefore having higher demand for faster con-
nectivity. Surprisingly, this pattern is more muted in the later part of the sample. Es-
timates of the expenditure model show that richer individuals spend more on mobile
telecommunications, as one would expect. Mobile expenses also increase in the num-
ber of residents in the household; this is consistent with the notion that individuals in
larger families have more reason to communicate and are therefore more active users
of mobile telecommunications services.

Table 6 displays estimates of the dynamic parameters: entry costs, technology up-
grade costs, the cost of non-compliance with the regulation, the standard deviation of
the cost shocks, and the unobservable profitability parameters, ψ. The costs associated
with the introduction of 3G are found to be essentially constant over time. In contrast,
the costs of introducing 4G decrease sharply, driven by the coefficient on the munici-
pality’s area.32 Lastly, the fine is found to be very substantial: 6.89 million BRL, which
is just over 40% of the median entry cost.

6 Counterfactual Analysis

The counterfactual exercises I conduct in this section directly address the questions
posed in the beginning of the paper. In subsection 6.1, I use the model to analyze the
effect of coverage requirements on the time to introduction of 3G technology. I also use
the model to quantify the cost that the regulation imposes on firms and to decompose
the total effect of coverage requirements into a direct effect on the regulated firm and
indirect equilibrium effects. In subsection 6.2, I use the model to evaluate alternative

32In fact, the cost of upgrading to 4G in the later period is found to be negative.
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Table 5: Static Parameter Estimates

Market Shares, Early Market Shares, Late Expenditures

2G 3G 4G 2G 3G 4G
Intercept 7.718 6.532 3.740 4.001

Log Income 0.211 0.421 0.819 -0.205 -0.057 0.366 0.356
(0.003)

Pop Dens. 0.269 0.341 0.423 0.160 0.185 0.213

Residents 0.031
(0.002)

λ 0.628 0.628

N 71,994
R2 0.199

State-Phase FEs Yes Yes Yes Yes Yes Yes No
State-Rural FEs No No No No No No Yes
The first six columns show estimates of the parameters in equation (5), separately by the two phases, early and late. Estimation is

based on moment conditions formed using area-code level data for the 2013-2018 period (4,113 observations), and municipality-
level data for 2019 (36,290 observations). See section 4 for details on estimation. The last column shows OLS estimates of equation
7. These estimates are based on survey data on consumers’ expenses on mobile telecommunications services and demographic
characteristics.

Table 6: Dynamic Parameter Estimates

Parameter Estimate Parameter Estimate
σ 2.461 ϕ 6.896
θe,0 19.418 θe,Area -0.432
θE3G,0 7.363 θE3G,Area 0.721
θL3G,0 7.634 θL3G,Area 0.750
θE4G,0 -13.896 θE4G,Area 3.555
θL4G,0 -11.569 θL4G,Area 0.865
ψ1 -0.199 ψ2 -0.051
ψ3 -0.013 ψ4 0.014
ψ5 0.067

σ is the standard deviation of the cost shocks. ϕ is the cost of failing to
comply with the regulation. θe,0 is the entry cost intercept. θe,Area is the
coefficient on the logarithm of area in the entry cost function. The remain-
ing parameters are associated with installing 3G and 4G technology. The
subscripts 3G and 4G indicate the technology. The subscripts 0, Area in-
dicate the intercept and the area term, respectively. The superscripts E,L
indicate the two periods, early and late. For example, θL4G,0 is the intercept
of the cost of introducing 4G technology in the later period. The parame-
ters ψ1, . . . , ψ5 are the unobservable profit terms; see equation 3 and the
discussion therein.
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regulations. Specifically, I consider policies that subsidize the first firm to introduce 3G
technology, as well as an intervention that uses coverage requirements as insurance,
in the sense that the regulated firm only incurs noncompliance costs in case no firm
introduces 3G technology.

6.1 The Effect of Coverage Requirements

To quantify the effect of coverage requirements on the time to introduction of 3G tech-
nology and firms’ ex-ante expected profits, I use the estimated model to simulate data
under two alternative regulatory regimes. First, I solve the game and simulate data
under the estimated fine ϕ̂. Second, I solve the game and simulate data setting ϕ = 0,
i.e., with no regulation. I simulate 250 paths of play for each municipality under each
of these two regulatory regimes.

First, I compute the fraction of the 250 simulations in which some firm introduced
3G technology by December 2019. Figure 4 shows the distribution of those probabil-
ities across municipalities. The figure shows that 66.45% of the municipalities in the
sample would have had access to 3G technology with at least 75% probability. For
88.75% of the municipalities, the probability of having 3G access by December 2019
is at least 50%. This suggests that for most municipalities, market forces would most
likely than not be sufficient to guarantee provision of 3G service. Figure 4 also shows
that for 11.25% of municipalities, the probability of having 3G service by December
2019 is less than 50%. In these municipalities, market forces are insufficient to guaran-
tee service provision. All the municipalities that have no service in the beginning of
the data are in this group.

The results above may suggest that the regulation has limited effect, given that the
probability of having 3G service by December 2019 is high for most municipalities.
However, the regulation turns out to have non-negligible effects on the time to intro-
duction of 3G technology. I use the models with and without regulation to simulate
data until 2023. For each municipality and regulatory regime, I calculate the average
number of years before the introduction of 3G techology or better.33 Figure 5 shows the
resulting distributions. In the figure, the label “Status quo” refers to setting the fine to
ϕ̂. The label “No regulation” corresponds to setting the fine to 0. As can be seen from
the figure, the regulation reduces the average time to 3G introduction significantly –
by 1.15 years, on average. The regulation also considerably reduces the dispersion in

33In those instances in which 3G is not introduced by the end of the simulated data, I set the time to
3G introduction equal to the length of the simulated sample. This implies that the numbers I present on
the effect of the regulation are, in some cases, a lower bound.
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Figure 4: Distribution of the Probability of Reaching 3G by December 2019 Without Regula-
tion.

the time to introduction of 3G, mostly by eliminating a long right tail present in the
absence of regulation.

Figure 6 shows the same information in a different way. For each municipality, I
compute the accelleration in the introduction of 3G due to the regulation. Figure 6
plots the resulting distribution across municipalities. The effects are concentrated be-
tween 0 and 2 years, though there is a long right tail, consisting of the most vulnerable
markets. For 4 municipalities, the regulation delays the introduction of 3G, though
those effects are quantitatively small. In those cases,the equilibrium effects dominate
the direct effect of the regulation.

To further understand the determinants of the effects of the regulation, I investi-
gate how the time to 3G introduction in the absence of regulation and the acceleration
afforded by coverage requirements relate to observable market characteristics. Specif-
ically, I project the time to introduction of 3G with no regulation and the acceleration
induced by coverage requirements onto observable market characteristics and vari-
ables that capture the initial market structure. I restrict attention to the municipalities
that did not have 3G in the beginning of the sample. Table 7 reports the results.

The dependent variable in column 1 of table 7 is the time to 3G introduction with-
out regulation, measured in years, and the explanatory variables are a municipality’s
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Figure 5: Distribution of the time to introduction of 3G technology or better under alternative
regulatory regimes.

Figure 6: How much faster is the introduction of 3G+ under regulation?
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Table 7: Explaining Time to Adoption and the Effect of Regulation

Dependent variable:

Time to 3G Speedup No. Entrants Regulation Cost

(1) (2) (3) (4)

Log GDP −0.324∗∗∗ −0.221∗∗∗ 0.031∗∗∗

(0.052) (0.027) (0.007)

Log Population −0.363∗∗∗ −0.130∗∗∗ 0.084∗∗∗

(0.070) (0.037) (0.010)

Log Area 0.415∗∗∗ 0.253∗∗∗ −0.049∗∗∗

(0.025) (0.013) (0.004)

No. Firms t = 0 −1.630∗∗∗ −0.319∗∗∗

(0.082) (0.051)

Regulated Active t = 0 0.293∗∗∗ −0.884∗∗∗

(0.032) (0.009)

Regulated 2.889∗∗∗

(0.050)

Active 0.127∗∗∗

(0.017)

Regulated * Active −2.732∗∗∗

(0.041)

Constant 0.007∗∗∗

(0.001)

Group FEs Yes Yes Yes No
Observations 689 665 665 3,008
R2 0.797 0.747 0.948 0.863
Adjusted R2 0.795 0.744 0.947 0.863

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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GDP per capita, population, and area, as well as the number of firms in the beginning
of the data.34 The results show that the time to 3G introduction without regulation is
decreasing in a municipality’s GDP per capita and in its population, and it is increas-
ing in a municipality’s area. Moreover, the time to 3G introduction is decreasing in the
number of firms in the market in t = 0. These results are all intuitive: firms are more
likely to enter and upgrade their technologies in richer, more populous, and smaller
markets; since incumbents have a lower cost of introducing 3G than potential entrants,
a larger initial number of firms leads to faster 3G introduction.

The second column in table 7 models the acceleration in the introduction of 3G
generated by coverage requirements, measured in years, as a function of the same
variables included in column 1, and additionally a dummy for whether the regulated
firm was active in the market in the beginning of the data.35 The coefficients on the
market characteristics and the number of firms show the same pattern as column 1,
i.e., markets where, in the absence of regulation, 3G would be introduced faster also
experience a smaller acceleration, as one might expect. Lastly, the estimates imply
that regulating an incumbent leads to a larger acceleration than regulating a potential
entrant, of just under four months.

The third column in table 7 reports a regression of the average number of entrants
in a market, computed from simulations at the end of 2022, on market characteristics
and whether the regulated firm was active in t = 0. Regulating an incumbent instead
of a potential entrant reduces the average number of entrants by just under 0.9. The
sign is expected, as a regulated potential entrant has to enter the market. The coeffi-
cient is less than one in absolute value because regulating an incumbent implies that
there is one more unregulated potential entrant, and thus more entry that is not due
to the regulation. Moreover, unregulated potential entrants may be more likely to en-
ter the market when an incumbent firm is regulated, because they expect less future
competition. I will show below, however, that for most markets the magnitude of this
mechanism is not of first order importance.

Next, I use the model to calculate the cost that the regulation imposes on firms.36

Solving the dynamic game under the estimated fine and under no regulation, I obtain,
for each municipality, firms’ ex-ante expected profits under those two regimes. The

34I take averages over time of these municipality characteristics. The sample is restricted to those
markets that do not have 3G service in the beginning of the data.

35To aid in the interpretability of the coefficient on the dummy, this regression and the one in the
third column further restrict attention to those municipalities that had at least one active firm in the
beginning of the data

36Note that in the real world part of this cost is borne by the government, via reduced revenue in
spectrum auctions.
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cost of the regulation is the aggregate difference in firms’ ex-ante expected in profits
in the no-regulation and the status-quo regimes:

Regulation Cost =
∑
m

∑
f

(
V m
ϕ=0(sf0, s−f0, t = 0)− V m

ϕ=ϕ̂(rf , sf0, s−f0, t = 0)

)

where V m
ϕ (ω) is the firm’s ex-ante expected profit in municipality m and state ω when

the fine is set to ϕ.37 For the set of municipalities used in estimation, I calculate that the
cost of the regulation amounts to 2.11 billion 2010 BRL, or 1.2 billion 2010 USD.38 This
amounts to 24.14% of firms’ aggregate ex-ante expected profits with no regulation.

To understand the sources of these costs, the last column in table 7 reports estimates
of a regression of the municipality-firm-specific regulation cost, V m

ϕ=0(sf0, s−f0, t =

0)− V m
ϕ=ϕ̂(rf , sf0, s−f0, t = 0), onto a dummy for whether or not the firm is regulated, a

dummy for whether or not the firm was active in the market in t = 0, and their inter-
action. The estimates show that for unregulated potential entrants (i.e., Regulated = 0

and Active = 0), the cost of the regulation is essentially zero. It is slightly positive be-
cause the regulation leads to a more competitive market when these potential entrants
do enter, thus reducing their profits. As discussed in more detail below, that effect is
small, which explains the small cost imposed on these firms. The cost for unregulated
active firms is larger, because these firms are directly affected by the extra compe-
tition brought about by coverage requirements. On average, these firms lose about
134,000 USD because of the regulation, which is equivalent to 3.63% of their ex-ante
expected profit without regulation. That effect depends on the technology of the in-
cumbent firm: unregulated firms with 2G technology lose about 96,000 USD (3.22% of
their profits), whereas unregulated firms with 3G technology lose about 346,000 USD
(4.51% of their profits).

The bulk of the regulation costs falls on the regulated firms. The cost imposed
on regulated firms with 2G technology is, on average, 291,000 USD, or 9.74% of their
profits under no regulation. The cost imposed on regulated firms that are not active
in the market is very substantial: it is equal to 2.90 million USD, which is almost 13
times their ex-ante expected profits of (on average) 223,000 USD. This cost comes from
the fact that these firms are forced to enter the market when they might have chosen
not to do so. Overall, 84.62% of the costs imposed on firms come from those imposed
on regulated potential entrants; 9.71% come from regulated incumbents; and the re-

37Note that in the first term, V mϕ=0(sf0, s−f0, t = 0), I do not include the regulation indicator rf as an
argument because there is no regulation in that case; rf does appear as an argument in the second term.

38This conversion uses the average exchange rate in 2010.
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maining 5.67% come from unregulated firms, i.e., they amount to costs stemming from
competition effects of the regulation.

The fact that the regulation costs imposed on incumbents is substantially smaller
than that imposed on potential entrants, combined with the fact that regulating in-
cumbents leads to a faster introduction of 3G (see column 2 of table 7), may suggest
that coverage requirements should be imposed on active firms. In practice, the extent
to which this policy can be pursued, however, is limited by concerns of competitive
neutrality. Such a policy would also provide poor incentives to firms, as entering new
markets would make a firm more likely to be regulated in the future. Furthermore,
this policy has an opportunity cost that is illustrated by column 3 of table 7: impos-
ing the coverage requirement on an incumbent leads to less competition in the market
than imposing the requirement on a potential entrant.39 For the imposition of cover-
age requirements on potential entrants to be better, in aggregate welfare terms, than
imposing those requirements on incumbents, the added competition (which is of 0.88
firms on average, according to table 7) has to generate an increase in consumer surplus
of 8.60 BRL per month. This is equal to 50.65% of the average predicted expenditure
for this set of municipalities.40

I close this subsection on the effects of coverage requirements by decomposing
these effects into direct effects on the regulated firm and indirect equilibrium effects.
To do so, I proceed in three steps. First, I solve the game and simulate data in the
absence of regulation. I then solve for the regulated firm’s optimal policy given the
estimated fine and holding the policy functions of the unregulated firms fixed at their
equilibrium policies without regulation. Next, I solve for the Markov Perfect Equilib-
rium under regulation. The difference between the time to adoption under the equilib-
rium policies with regulation and the time to adoption when only the regulated firm
responds to the regulation gives the desired equilibrium effects.

Figure 7 shows the distribution, across municipalities, of the equilibrium effects.
Most of the values are positive: the equilibrium adjustment leads to a longer time
to introduction of 3G, relative to the case when only the regulated firm adjusts its
behavior to the policy. This reflects the reduced incentives to enter and upgrade faced

39Column 1 of table 7 suggests a second cost. Imposing the coverage requirement on a potential
entrant may also accelerate the introduction of subsequent technologies. Below I investigate the effects
of alternative coverage requirements on the adoption of 4G (which hasn’t been directly regulated for
this set of municipalities).

40This number is obtained by dividing the added cost from imposing the requirement on a potential
entrant (assuming a single active firm in the market and setting the costs on inactive firms to zero)
by the average population in the subsample of municipalities that don’t have 3G in the beginning of
the sample, which is 4,689, using the discount factor used in the model to arrive at a monthly gain in
consumer surplus.
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Figure 7: Equilibrium Effects

by unregulated firms, resulting from the increased future competition generated by
the regulation. Quantitatively, however, the equilibrium effects are very small. The
total effects of the policy are therefore almost entirely explained by the direct effects
on the regulated firm.

6.2 Alternative Regulatory Interventions

The final question posed in the beginning of this paper was whether we can design
more effective regulation than coverage requirements. As before, I am mostly con-
cerned with two dimensions of a policy’s effect: to what extent it accelerates the intro-
duction of the new technologies, and the cost of adoption of these new technologies.
I will also highlight the effect of different policies on market structure. In this subsec-
tion, I evaluate two alternative forms of intervention: using coverage requirements as
“insurance” against lack of service, and subsidizing the first firm to introduce 3G.

6.2.1 Coverage Requirements as Insurance

The regulation currently in place consists of tasking one firm with introducing 3G tech-
nology by a given date. If that firm fails to do so, it incurs a cost of non-compliance.
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An alternative implementation of coverage requirements would be to impose costs on
the regulated firm only if no firm provides 3G by the regulation deadline. This im-
plementation would achieve introduction of 3G by the regulation deadline (assuming
sufficiently strong enforcement), and it would also have benefits relative to the cur-
rent implementation of the regulation. First, it would reduce the cost imposed on the
regulated firm, because if some other firm chooses to introduce 3G, the regulated firm
would not be subject to the requirement anymore. Second, this implementation of
coverage requirements would do away with negative entry deterrence effects. How-
ever, given the results above showing that the equilibrium effects of the regulation are
quantitatively small, this benefit should also be small.

Results and discussion to be added.

6.2.2 Subsidizing the Introduction of 3G

The large estimated cost of non-compliance and the counterfactual results above show
that coverage requirements provide strong incentives for the regulated firm to intro-
duce 3G. These strong incentives ensure service provision. However, they come at the
cost of forcing a firm to enter a market or upgrade its technology when it might not
have done so in the absence of regulation. The analysis above established that these
costs are substantial, especially when the regulated firm is not active in the market.

A policy that treats firms symmetrically, instead of focusing on a single firm, may
save on these costs. The intuition is simple. By providing the same incentive to all
firms, the firm that will eventually choose to introduce the new technology will tend
to be the most cost-efficient one.

Motivated by this reasoning, in this section I evalute a regulation that subsidizes
the first firm to introduce 3G technology or better. I denote the subsidy by β. If more
than one firm introduces the new technology, those firms split the subsidy equally.
Therefore, I add the following term to firms’ flow profits for each state of the game

β × 1

{(
max
f ′

sf ′

)
< 3 ≤ af

}
︸ ︷︷ ︸

Subsidy is paid

×
3∑

n=0

P

((∑
f ′ 6=f

1{af ′ ≥ 3}

)
= n

)
× 1

1 + n︸ ︷︷ ︸
Expected fraction of the subsidy

where the probabilities in this expression are derived from the ensuing equilibrium
behavior.
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I experiment with two subsidy designs. I start with a budget given by

Budget =
∑
m

∑
f

(
V m
ϕ=0(sf0, s−f0, t = 0)− V m

ϕ=ϕ̂(rf , sf0, s−f0, t = 0)

)
(15)

This amount is simply the aggregate cost of the regulation. Note that firms would
be willing to pay this amount to move from the status quo world to a world with a
subsidy. In that sense, the subsidies considered below are self-financed.

I start by simply splitting the budget in equation (15) equally across municipali-
ties. Figure 8 shows the resulting acceleration in the introduction of 3G technology
obtained under coverage requirements (labeled “status quo” in the figure) and the
subsidy. The average effect is very similar; the subsidy accelerates the introduction
of 3G by 1.07 years on average, relative to 1.15 years under coverage requirements.
The subsidy generates larger accelerations for 63.71% of the municipalities. As figure
8 shows, relative to coverage requirements, the subsidy eliminates some small effects,
but also loses some large ones. The large effects lost by the subsidy come precisely
from those municipalities that would experience relatively late introduction of 3G in
the absence of regulation. Consider, for example, those municipalities where coverage
requirements generate an acceleration in the introduction of 3G of one year and a half
or more. The average time to introduction of 3G without regulation in these munici-
palities is almost three years more than in the remaining municipalities. This is a set of
municipalities where the introduction of 3G is relatively unprofitable, and the homo-
geneous subsidy provides less incentives for 3G introduction in these municipalities
than coverage requirements do. For this set of municipalities, the subsidy leads to 3G
introduction 1.2 years later than coverage requirements, on average.

The municipalities where coverage requirements generate small accelerations (less
than 6 months) are relatively competitive municipalities. The average number of firms
in t = 0 in those municipalities is 1.54, relative to 0.96 in the remaining municipalities.
The introduction of 3G in these municipalities in the absence of regulation is relatively
fast: just under 3.5 years, on average, compared to just over under 5.5 years in the
other municipalities. In these markets, the effect of the subsidy is very close to the
mean effect, so that these markets are moved from the left tail of the “Status Quo”
distribution if figure 8 to the middle of the subsidy distribution. In summary, relative
to coverage requirements, a flat subsidy increases the acceleration of 3G introduction
in some localities where there seems to be little need for regulation, and has smaller
effects in some municipalities where regulation seems to be particularly important.
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Figure 8: Acceleration of 3G Introduction Under Coverage Requirements and Subsidy

This point is shown clearly in figure 9. The figure shows a scatterplot of the time
to introduction of 3G technology in the absence of regulation against the effects of
coverage requirements and the flat subsidy. Each dot in the figure is one municipality.
For the case of coverage requirements, we see a positive correlation: the regulation has
stronger effects in those markets where, in the absence of intervention, it would take
longest for 3G to be introduced. The flat subsidy does not display the same correlation.
In fact, its effects are smallest for the most vulnerable municipalities.

In light of these results, I consider a subsidization policy that allocates a larger
share of the budget towards the most vulnerable municipalities. Specifically, let τm
be the time for 3G introduction in municipality m in the absence of regulation and
let f be a positive and increasing real function. Allocate to municipality m the frac-
tion f(τm)/

∑
m′ f(τ ′m) of the budget specified in equation (15). The more convex f

is, the stronger the targeting towards the most vulnerable municipalities. For the re-
sults below, I set f(τ) = τ 3/2.41 Figure 10 shows the results. This subsidy leads to a

41This subsidy design relies on τm, and one may thus be concerned that its informational require-
ments are substantial. However, note that the results in table 7 show that a substantial portion of the
variation in τm is explained by observables. Therefore, it might be possible to design a subsidy with
similar properties that relies only on data that is available to regulators.

43



Figure 9: Targeting Properties of Coverage Requirements and a Flat Subsidy

larger acceleration in the roll-out of 3G: 1.27 years relative to 1.15 years under cover-
age requirements. As shown in the figure, the municipality-specific subsidy restores
the desired positive correlation between the effect of the regulation and the time to 3G
introduction in the absence of regulation. In fact, this subsidy leads to larger accel-
erations in the roll-out of 3G in the most vulnerable municipalities than do coverage
requirements. This comes at the expense of slightly smaller effects in those municipal-
ities that even in the absence of regulation obtain access to 3G technology relatively
quickly. The optimal way to navigate this trade-off (e.g., the optimal choice of ex-
ponent in f(τ)) depends on the relative changes in consumer surplus in those two
groups of municipalities, which can’t be quantified with the limited data available in
this study.

Finally, firms substantially benefit from the municipality-specific subsidy relative
to coverage requirements.42 Firms’ ex-ante aggregate expected profits grow by 659
million USD, after accounting for their financing of the subsidy (as per equation (15));
this amounts to 17.46% of firms’ aggregate profits under coverage requirements. These
gains essentially come from reallocating the introduction of the new technology from

42Similar results hold for the flat subsidy.
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Figure 10: Targeting Properties of Coverage Requirements and a Municipality-Specific
Subsidy

inactive and regulated firms, who have to pay entry costs to enter the market, to in-
cumbents, who only pay technology installation costs.

This reallocation leads to a more cost-efficient technology roll-out, but at the ex-
pense of reduced competition in the market. The subsidy leads to entry of 0.51 firms,
on average, by the end of 2022. In contrast, coverage requirements lead to entry of
0.84 firms. Moreover, this difference is entirely driven by those markets where the reg-
ulated firm is a potential entrant, which are the source of the cost savings discussed
above. The average number of entrants in these markets, under coverage require-
ments, is 1.32, whereas it is equal to 0.57 under the subsidy. In the remaining markets,
those where the regulated firm is an incumbent, coverage requirements result in entry
of 0.42 firms, on average; the subsidy results in entry of 0.46 firms. In those markets
where a potential entrant is subject to the coverage requirement, the coverage require-
ment would be more desirable than the subsidy if the added competition from one
additional firm generated additional consumer surplus of 7.35 BRL; that amounts to
44.69% of consumers’ average expenditures in those markets.
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7 Conclusion

Concerns regarding lack of service provision are widespread and so is regulatory in-
tervention. This paper studies the effect of coverage requirements, a common form of
regulation in the mobile telecommunications industry, on the speed of roll-out of new
technologies, market structure, and firms’ profits. To do so, I use new mobile technol-
ogy availability data from Brazil to estimate a dynamic model of entry and technology
upgrade under regulation.

Counterfactual simulations show that in the absence of regulation, third genera-
tion mobile telecommunications technology would have been introduced just over one
year later, on average. This faster introduction comes at a high cost: firms’ ex-ante ex-
pected profits are 24% lower under the existing regulation than they would have been
in its absence. I also use the model to evaluate alternative policies. In particular, I find
that a policy that subsidizes the first firm to introduce 3G technology, by an amount
that the firms themselves would be willing to finance, achieves a slightly larger accel-
eration of the introduction of 3G and leads to more cost-efficient patterns of roll-out,
likely increasing aggregate welfare. These findings have immediate implications for
the design of regulation in mobile telecommunications markets, and potentially to
other markets where universal service is also a concern.

Some interesting and related questions are not addressed in this paper. First, though
my results are informative for the design of regulation, data limitations preclude me
from conducting a complete welfare analysis. It would be interesting to combine data
such as the one used in this paper with detailed price and quantity data to compare
the gains in consumer surplus from having earlier access to new technologies and the
regulatory costs imposed on firms. Second, my analysis abstracted away from spatial
correlation in firms’ costs. It would also be interesting, though challending, to study
the introduction of new mobile telecommunications technologies while modeling ge-
ographic cost interdependencies. These interesting and challenging topics are left for
future research.
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Appendix

Appendix A Regulation and Delay in the Fudenberg-Tirole

Model

A.1 The Model

There are two firms. Firm 1 is an incumbent and firm 2 a potential entrant. Time is
continuous and the discount rate is r. Firm 1 initially operates as a monopolist with
constant marginal cost c̄. At any point in time t ≥ 0, firms can adopt a technology
with constant marginal cost c

¯
. Adopting this technology at time t costs C(t), where

C(t) > 0, C ′(t) < 0 and C ′′(t) > 0, for all t ≥ 0.
Let pm(c) and πm(c) be, respectively, the monopoly price and profit when marginal

cost is c. I focus on the case in which the innovation is non-drastic, i.e., pm(c
¯
) ≥ c̄. If

both firms are in the market, they compete à la Bertrand. Let πd(c, c′) be a firm’s profit
when its cost is c and its competitor’s cost is c′. Under the assumption of a non-drastic
innovation and Bertrand competition, πd satisfies

πd(c
¯
, c̄) = (c̄− c

¯
)D(c̄), πd(c̄, c

¯
) = 0 and πd(c, c) = 0 ∀c

Firms’ strategies specify their decisions to adopt or not the new technology as a
function of t and their competitor’s technology43. Note that due to the Bertrand as-
sumption, a firm will never adopt the new technology after its competitor has adopted,
as they would incur the positive adoption cost but their flow profits would stay at zero.

If the incumbent is first to adopt at date t1, its overall profit is

L1(t1) =

∫ t1

0

πm(c̄)e−rtdt+

∫ ∞
t1

πm(c
¯
)e−rtdt− C(t1)e

−rt1 (16)

If the incumbent is preempted at date t2, its present discounted profit is

F1(t2) =

∫ t2

0

πm(c̄)e−rtdt (17)

43The discussion here is somewhat informal. Fudenberg and Tirole 1985 provide a careful description
of appropriate strategies for this game. Their analysis is far from trivial.
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Figure 11: Payoffs in the Fudenberg-Tirole Model.

If the entrant is first to adopt at date t2, its overall profit is

L2(t2) =

∫ ∞
t2

πd(c
¯
, c̄)e−rtdt− C(t2)e

−rt2 (18)

Finally, it the entrant is preempted at time t1, its profit is given by F2(t1) = 0.
Figure 11 plots the functions44 L1, F1, L2, F2. That figure is sufficient to determine

the equilibrium outcome of the game45. Let t∗2 be defined by F2(t2) = L2(t2). In Figure
11, t∗2 ≈ 5. Firm 2 will not adopt before t∗2, as it would prefer to be preempted by firm
1. Knowing this, firm 1 will wait to adopt, as L1(t1) is increasing over t1 < t∗2. Now
suppose firm 2 is first to adopt at some t2 > t∗2. Since L1(t2 > F1(t2)), firm 1 prefers to
adopt at t2 − ε. In equilibrium, firm 1 adopts at t1 = t∗2, and firm 2 never adopts.

44The specification is as follows. D(p) = 2− p, c̄ = 1, c
¯

= 3/4, C(t) = 1{t <= 10}
(
t2

4 − 5 ∗ t+ 25
)

+

0.1.
45But not the equilibrium itself, i.e., the strategy profile.
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Figure 12: Payoffs in the Fudenberg-Tirole Model with Regulation.

A.2 Incorporating Regulation

Now suppose that the incumbent is regulated: is must adopt by some exogenously set
deadline τ , lest it pay an exorbitant fine. The Li and Fi functions are now defined (for
ti ≤ τ ) as follows:

L1(t1) =

∫ t1

0

πm(c̄)e−rtdt+

∫ ∞
t1

πm(c
¯
)e−rtdt− C(t1)e

−rt1 (19)

F1(t2) =

∫ t2

0

πm(c̄)e−rtdt− C(τ)e−rτ

L2(t2) =

∫ τ

t2

πd(c
¯
, c̄)e−rtdt− C(t2)e

−rt2

F2(t1) = 0

Figure 12 plots these payoffs for the same parametrization underlying Figure 11,
and τ = 10. As can be seen from the figure, the fact that the incumbent will adopt the
technology at time τ , at the latest, eliminates all incentive for the entrant to adopt the
new technology. With no need to preempt the entrant, the incumbent is free to delay its
own adoption to its most preferred time, which in this example is t∗1 ≈ 9.7. Therefore,
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the regulation delays the adoption of the new technology from t ≈ 5 to t ≈ 9.7. Of
course, if τ < 5, the regulation speeds up the adoption of the new technology.
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Appendix B Descriptive Models – Alternative Specifica-

tions

This appendix reports alternative specifications of the descriptive models in table 4. In
particular, table 8 reports models without group fixed effects, and table 9 reports mod-
els that include characteristics of firms’ networks in neighboring states. Specifically, it
includes dummies for whether or not the firm provides 2G, 3G, and 4G service in any
neighboring municipality. Comparing table 8 and table 4 shows the importance of the
group fixed effects. Without them in table 8, the competition coefficients are mostly
small in absolute value and sometimes positive. That is in stark contrast with the re-
sults in table 4, where the competition coefficients are almost all negative and much
larger in absolute value. This suggests that the group fixed effects capture important
unobserved factors related to how desirable it is to provide service in a given market.

Now let me turn to table 9. The first thing to note is that service in neighboring
municipalities is important. The estimated coefficients on 3G service and 4G service
are sizeable and precisely estimated. Interestingly, the coefficients on 2G service in
neighboring municipalities are negative. This is surprising because these coefficients
are relative to not having service in the neighboring municipality. The next thing to
observe is the effect of the network variables on the competition coefficients. These
effects are mostly small, except perhaps for the number of competitors with 4G tech-
nology. Albeit small, the effects are always in the direction of increasing (in absolute
value) the estimated competition coefficients. This may suggest that there are unob-
servable factors that are geographically correlated46. Finally, and most importantly for
the analysis in this paper, note that the effect of the network variables on the regulation
variables is very minor, if it exists at all. This suggests that the regulation variables (in
particular, whether or not a firm is regulated) are not correlated with the surrounding
network infrastructure.

Table 10 tests the hypothesis of no correlation between a firm’s status as the regu-
lated firm and that firm’s infrastructure in neighboring markets. The unit of analysis
for the models in table 10 is a firm-market pair, and only data from the June 2016 (the
first period in the data) is used. The table reports estimation results of a logit model
and a linear probability model (included for the sake of interpretability) where the
dependent variable is a dummy that takes the value 1 if the firm is regulated, and 0
otherwise. The explanatory variables are a constant and a set of dummies. The vari-

46Variables that are currently omitted and could potentially be included are variables related to the
terrain.
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Table 8: Entry/Upgrade Models – Without group fixed effects

Dependent variable:

Upgrade
Out 13-15 Out 16-18 2G 13-15 2G 16-18 3G

(1) (2) (3) (4) (5)

Log GDP PC 0.389∗∗∗ −0.001 0.241∗∗∗ −0.194∗∗∗ 0.186∗∗∗

(0.064) (0.081) (0.047) (0.051) (0.032)

Log Pop. 0.761∗∗∗ 0.728∗∗∗ 0.851∗∗∗ 0.430∗∗∗ −0.059∗

(0.066) (0.086) (0.051) (0.058) (0.035)

Log Area −0.123∗∗∗ −0.078∗∗ −0.221∗∗∗ −0.233∗∗∗ 0.018
(0.031) (0.040) (0.025) (0.027) (0.019)

Regulated 1.712∗∗∗ 2.111∗∗∗ 2.312∗∗∗ 0.926∗∗∗ −0.398∗∗∗

(0.110) (0.126) (0.076) (0.104) (0.040)

Regulated Competitor - Out −0.662∗∗∗ −1.167∗∗∗ 0.320∗∗ −0.221 −0.137
(0.173) (0.284) (0.150) (0.162) (0.132)

Regulated Competitor - 2G −0.021 −0.157 −0.304∗∗ −1.202∗∗∗ −2.345∗∗∗

(0.115) (0.192) (0.120) (0.314) (0.235)

No. Competitors 2G −0.044 −0.374∗∗∗ −0.035 0.137∗∗∗ −0.064∗∗

(0.069) (0.097) (0.036) (0.049) (0.027)

No. Competitors 3G −0.269∗∗∗ −1.239∗∗∗ 0.047 −0.001 0.190∗∗∗

(0.090) (0.104) (0.047) (0.053) (0.033)

No. Competitors 4G 0.212 −0.466∗∗∗ −1.343∗ −0.307∗∗∗ 0.411∗∗∗

(1.031) (0.107) (0.719) (0.056) (0.034)

Group FE No No No No No
Observations 36,230 31,620 24,753 14,002 39,923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Entry/Upgrade Models – With Neighboring Network Info

Dependent variable:

upgrade
Out 13-15 Out 16-18 2G 13-15 2G 16-18 3G

(1) (2) (3) (4) (5)

Log GDP PC 1.772∗∗∗ 1.116∗∗∗ 0.693∗∗∗ 0.261∗∗∗ 0.323∗∗∗

(0.093) (0.120) (0.066) (0.071) (0.039)

Log Pop. 2.537∗∗∗ 2.151∗∗∗ 1.337∗∗∗ 1.081∗∗∗ 0.137∗∗∗

(0.106) (0.151) (0.072) (0.085) (0.047)

Log Area −0.512∗∗∗ −0.398∗∗∗ −0.294∗∗∗ −0.402∗∗∗ −0.063∗∗∗

(0.038) (0.051) (0.027) (0.031) (0.020)

Regulated 1.716∗∗∗ 2.269∗∗∗ 2.191∗∗∗ 0.887∗∗∗ −0.275∗∗∗

(0.110) (0.130) (0.077) (0.110) (0.042)

Regulated Competitor - Out −0.720∗∗∗ −0.997∗∗∗ 0.131 −0.364∗∗ −0.100
(0.173) (0.285) (0.152) (0.168) (0.136)

Regulated Competitor - 2G 0.099 0.023 −0.487∗∗∗ −1.114∗∗∗ −2.155∗∗∗

(0.114) (0.195) (0.121) (0.319) (0.236)

No. Competitors 2G −1.445∗∗∗ −1.153∗∗∗ −0.448∗∗∗ −0.339∗∗∗ −0.154∗∗∗

(0.093) (0.120) (0.056) (0.069) (0.039)

No. Competitors 3G −2.072∗∗∗ −2.265∗∗∗ −0.667∗∗∗ −0.741∗∗∗ −0.015
(0.122) (0.146) (0.082) (0.088) (0.050)

No. Competitors 4G −1.796∗ −1.823∗∗∗ −2.310∗∗∗ −1.275∗∗∗ −0.184∗∗∗

(1.036) (0.158) (0.734) (0.093) (0.051)

Nb. Service 2G −0.398∗∗ −1.135∗∗∗ −0.174 −0.534 −0.047
(0.157) (0.171) (0.230) (0.328) (0.204)

Nb. Service 3G 1.040∗∗∗ 1.523∗∗∗ 0.601∗∗∗ 0.654∗∗∗ 0.490∗∗∗

(0.097) (0.180) (0.063) (0.108) (0.161)

Nb. Service 4G 0.960∗∗∗ 0.495∗∗∗ 0.575∗∗∗ 1.200∗∗∗ 1.640∗∗∗

(0.179) (0.097) (0.133) (0.062) (0.043)

Group FE Yes Yes Yes Yes Yes
Observations 36,230 31,620 24,753 14,002 39,923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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able “2G Service” is equal to 1 if the firm provides 2G service in that market; “3G
service” is analogously defined. “2G Service Nb.” is equal to 1 if the firm provides 2G
service in some neighboring market, and “3G Service Nb.” is defined similarly. The re-
sults show that, conditional on the technologies offered by a firm in the market, which
are included in the structural model, its infrastructure in neighboring municipalities
has a small effect on the probability that the firm is regulated. The point estimates
are in fact negative. These results suggest that there is no cause for concern that the
difference in behavior between regulated and unregulated firms, which identifies the
fine parameter ϕ in the structural model, is driven not by the regulation itself but by
omitted differences in firms’ neighboring infrastructure. Therefore, despite the im-
portance of neighboring infrastructure shown in table 9, I omit these variables from
the structural model, as doing so would likely not bias the inference regarding the ef-
fects of regulation and would increase the computational burden by several orders of
magnitude.

Appendix C Symmetry Restrictions

The symmetry assumption implies the following restrictions on value functions (and
policy functions):

• V1(s1, s−1, t) = V1(s1, P (s−1), t), for any permutation P .

• V0(s1, sr, s−, t) = V0(s1, sr, P (s−), t) for any permutation P .

• If sr ≥ 3 and ∃j /∈ {1, r} s.t. sj ≥ 3, then V0(s1, sr, sj, sk, t) = V0(s1, sj, sr, sk, t)

• If s1, sr ≥ 3, then V0(s1, sr, s−) = V1(s1, P (sr, s−)) for any P .

Add discussion on state space representation.

Appendix D Conditional Value Functions are Linear in

Parameters

In this section I will simplify notation by letting ω denote a generic state of the form
ω = (t, r, sf , s−f ). Flow payoffs, net of the idiosyncratic shock, are given by

π(ω)− ϕr1{sf < 2, T < t} − c(a, sf )
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Table 10: Testing for Selection on Infrastructure
in Neighboring Municipalities

Dependent variable:

Regulated
Logit LPM

(1) (2)

2G Service 1.727∗∗∗ 0.237∗∗∗

(0.058) (0.008)

3G Service 0.883∗∗∗ 0.194∗∗∗

(0.058) (0.010)

2G Service Nb. −0.240∗ −0.018
(0.125) (0.016)

3G Service Nb. −0.345∗∗∗ −0.047∗∗∗

(0.052) (0.008)

Constant −2.104∗∗∗ 0.116∗∗∗

(0.117) (0.015)

Observations 13,204 13,204
R2 0.139
Adjusted R2 0.139

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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This expression can be written as a linear function of parameters. To see this, first
redefine actions a and firm technological states sf to be vectors indicating the presence
of each technology, ordered from 4G to 2G. For example, if a firm offers 3G and 2G,
represent sf as sf = (0, 1, 1). The deterministic part of costs can then be written as[

(a′ − s′f )⊗ (1{p(t) = E},1{p(t) = L})⊗ z′
]

(θ′4,E, θ
′
3,E, θ

′
2,E + θe, θ

′
4,L, θ

′
3,L, θ

′
2,L + θe)

′︸ ︷︷ ︸
θ

Define

g(a, ω, z) :=
(
π(ω),

[
(a− sf )⊗ (1{p(t) = E},1{p(t) = L})⊗ z

]
, r1{sf < 2, T < t}

)
and

Ψ := (1, θ′, ϕ)′

Then we have

π(ω)− ϕr1{sf < 2, T < t} − c(a, sf ) = g(a, ω, z)Ψ

The value function satisfies the Bellman equation

V (ω, εf ) = max
a∈A(sf )

g(a, ω, z)Ψ + εf (a) + δ
∑
ω′

V (ω′)FP (ω′|ω, a)

where FP denotes the state transitions induced by the equilibrium conditional choice
probabilities P and

V (ω′) :=

∫
V (ω, εf )dG(εf )

Denote the equilibrium policy by σ∗(s, εf ). Then (using σ∗ as shorthand for σ∗(s, εf ))

V (ω, εf ) = g(σ∗, ω, z)Ψ + εf (σ
∗) + δ

∑
ω′

V (ω′)FP (ω′|ω, σ∗)

Integrating both sides of this equation yields

V (ω) =

(∫
g(σ∗, ω, z)dG(εf )

)
Ψ

+

∫
εf (σ

∗)dG(εf ) + δ
∑
ω′

V (ω′)

∫
FP (ω′|ω, σ∗)dG(εf )
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Let C(a, ω) be the set of shocks εf ∈ R|A(sf )| such that a = σ∗(ω, εf ). Then∫
g(σ∗, ω, z)dG(εf ) =

∑
a∈A(sf )

∫
C(a,ω)

g(σ∗, ω, z)dG(εf )

=
∑

a∈A(sf )

g(a, ω, z)

∫
C(a,ω)

dG(εf )

=
∑

a∈A(sf )

g(a, ω, z)P (a|ω)

where here P (a|ω) are the equilibrium conditional choice probabilities.
Similarly, ∫

P (ω′|ω, σ∗)dG(εf ) =
∑

a∈A(sf )

FP (ω′|ω, a)P (a|ω)

︸ ︷︷ ︸
FP (ω′|ω)

The term on the right hand side of this equation is simply the probability that the state
moves from ω to ω′, induced by the equilibrium conditional choice probabilities. I will
denote that term by FP (ω′|ω).

Finally, observe that∫
εf (σ

∗)dG(εf ) =
∑

a∈A(sf )

∫
C(a,ω)

εf (a)dG(ε) =
∑

a∈A(sf )

P (a|ω)E[εf (a)|a = σ(ω, εf )]

It is well known that for the Type I Extreme Value distribution, E[εf (a)|a = σ(ω, ε)] =

σ(γ − lnP (a|ω)), where γ is the Euler-Mascheroni constant. Therefore∫
εf (σ

∗)dG(εf ) = σ
∑

a∈A(sf )

P (a|ω)(γ − lnP (a|ω))

Putting these pieces together, we have

V (ω) =

(∑
a

g(a, ω, z)P (a|ω)

)
Ψ + σ

∑
a∈A(sf )

P (a|ω)(γ − lnP (a|ω))

+ δ
∑
ω′

V (ω′)FP (ω′|ω)

or
V (ω) = EP [g(a, ω, z)]Ψ + σγ − σEP [lnP (a|ω)] + δFP (ω)V

where EP denotes an expectation with respect to a using the distribution over a de-
fined by P , FP (ω) is a row vector with the transition probabilities in state ω, and V a
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vector with the value function in each state ω.
We can now stack these equations. Let MP denote the transition matrix induced by

P , M = [FP (ω′|ω)]ω,ω′ . Then47

V = EP [g(a, z)]Ψ + σγ − σEP [lnP (a)] + δMPV

From this equation we obtain

V = (I − δMP )−1
{
EP [g(a, z)]Ψ + σγ − σEP [lnP (a)]

}
= σK(P ) + (I − δMP )−1EP [g(a, z)]Ψ

where K(P ) := (I − δMP )−1(γ − EP [lnP (a)])

The conditional value function is, by definition,

v(a, ω) = g(a, ω, z)Ψ + δ
∑
ω′

V (ω′)FP (ω′|ω, a) = g(a, ω, z)Ψ + δFP (ω, a)V

where FP (ω, a) is the distribution over ω′ induced by taking action a in state ω. Using
the result above for V yields

v(a, ω)

σ
= δFP (ω, a)K(P ) +

{
g(a, ω, z) + δFP (ω, a)(I − δMP )−1EP [g(a, z)]

}
σ−1Ψ

47In this equation, it is to be understood that the scalar σγ is added to all coordinates. The ω-th
coordinate of EP [g(a, z)] is equal to

∑
a∈A(sf )

g(a, ω, z)P (a|ω). Similarly for EP [lnP (a)]

61


	Introduction
	Institutional Setting and Data
	Model
	Symmetric Markov Perfect Equilibria
	Quasi-Stationary Markov Perfect Equilibria
	Modeling Flow Profits

	Identification and Estimation
	Estimation of the Flow Profit Function
	Identification and Estimation of Dynamic Parameters
	Estimation

	Estimation Results
	Counterfactual Analysis
	The Effect of Coverage Requirements
	Alternative Regulatory Interventions
	Coverage Requirements as Insurance
	Subsidizing the Introduction of 3G


	Conclusion
	References
	Regulation and Delay in the Fudenberg-Tirole Model
	The Model
	Incorporating Regulation

	Descriptive Models – Alternative Specifications
	Symmetry Restrictions
	Conditional Value Functions are Linear in Parameters

