

Benchmarking with DEA Introduction to Data Envelopment Analysis September 12

> M. Muñoz-Márquez manuel.munoz@uca.es

TeLoYDisRen Research Group http://fqm270.uca.es Statistics and Operation Research Department Cadiz University, Spain

(*ロ) (日) (日) (日) (日) (日) (日) (日)

Benchmarking with DEA

Introduction to DEA

- DEA elements
- Objectives and methodology of the DEA

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

- Notation and formulation
- Example

Benchmarking with DEA

Introduction to DEA

- DEA elements
- Objectives and methodology of the DEA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Notation and formulation
- Example

3 Selection of variables

- The selection problem
- Significance measures
- Global model
- $\bar{\alpha}$ -ratios or loads

Benchmarking with DEA

Introduction to DEA

- DEA elements
- Objectives and methodology of the DEA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Notation and formulation
- Example

3 Selection of variables

- The selection problem
- Significance measures
- Global model
- $\bar{\alpha}$ -ratios or loads

4 Case study

Benchmarking with DEA

Introduction to DEA

- DEA elements
- Objectives and methodology of the DEA
- Notation and formulation
- Example

3 Selection of variables

- The selection problem
- Significance measures
- Global model
- $\bar{\alpha}$ -ratios or loads

4 Case study

Benchmarking with DEA

Introduction to DEA

- DEA elements
- Objectives and methodology of the DEA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Notation and formulation
- Example

3 Selection of variables

- The selection problem
- Significance measures
- Global model
- $\bar{\alpha}$ -ratios or loads

4 Case study

5 Conclusions and future work

References

Benchmarking

Evaluate by comparison with a standard = Benchmarking

M. Muñoz-Márquez Benchmarking with DEA

Benchmarking

Evaluate by comparison with a standard = Benchmarking

Objective evaluation

* Image from wikimedia

Benchmarking

Evaluate by comparison with a standard = Benchmarking

- Objective evaluation
- Relative or in comparasion to

Benchmarking

Evaluate by comparison with a standard = Benchmarking

- Objective evaluation
- Relative or in comparasion to
- Homogeneous results

* Image from wikimedia

Introduction to DEA Selection of variables Case study Conclusions and future work References

Motivation

• Improvement of the units

Introduction to DEA Selection of variables Case study Conclusions and future work References

Motivation

- Improvement of the units
- Budget distribution

Introduction to DEA Selection of variables Case study Conclusions and future work References

Motivation

- Improvement of the units
- Budget distribution
- Rewards establishment

Introduction to DEA Selection of variables Case study Conclusions and future work References

Motivation

- Improvement of the units
- Budget distribution
- Rewards establishment
- Evaluation of the evolution

Introduction to DEA Selection of variables Case study Conclusions and future work References

Results

Knowledge

M. Muñoz-Márquez Benchmarking with DEA

Introduction to DEA Selection of variables Case study Conclusions and future work References

Results

- Knowledge
- Coordination

Introduction to DEA Selection of variables Case study Conclusions and future work References

Results

- Knowledge
- Coordination
- Attribution

Introduction to DEA Selection of variables Case study Conclusions and future work References

Results

- Knowledge
- Coordination
- Attribution
- Measures

Introduction to DEA Selection of variables Case study Conclusions and future work References

Ratios

• Examples: $\frac{\text{profit}}{\text{investment}}$, $\frac{\text{sale}}{\text{agent}}$

M. Muñoz-Márquez Benchmarking with DEA

Introduction to DEA Selection of variables Case study Conclusions and future work References

Ratios

• Examples: profit investment, sale agent

• Advantages: Easy calculation and interpretation

Introduction to DEA Selection of variables Case study Conclusions and future work References

- Examples: $\frac{\text{profit}}{\text{investment}}$, $\frac{\text{sale}}{\text{agent}}$
- Advantages: Easy calculation and interpretation
- Disadvantages: One-dimensionality, disparity of results, supposes there is no economy of scale

Frontier models

• One prefers: Higher outputs with lower inputs

Frontier models

- One prefers: Higher outputs with lower inputs
- One does not know: The best way to do that

Frontier models

- One prefers: Higher outputs with lower inputs
- One does not know: The best way to do that
- The way: Estimating the frontier

Introduction to DEA Selection of variables Case study Conclusions and future work References

Frontier Models Clasification

 Deterministic	Stochastic

Introduction to DEA Selection of variables Case study Conclusions and future work References

Frontier Models Clasification

	Deterministic	Stochastic
Parametric		
Non parametric		

Benchmarking with DEA Introduction to DEA Selection of variables Case study Conclusions and future work References	
Frontier Models	

DeterministicStochasticParametricCOLSNon parametric

Clasification

• COLS = Corrected Ordinary Least Squares

Benchmarking with DEA Introduction to DEA Selection of variables Case study Conclusions and future work References	
Frontier Models	

	Deterministic	Stochastic
Parametric	COLS	SFA
Non parametric		

Clasification

- COLS = Corrected Ordinary Least Squares
- SFA = Stochastic Frontier Analysis

Benchmarking with DEA Introduction to DEA Selection of variables Case study Conclusions and future work References	
Frontier Models	

Clasification

	Deterministic	Stochastic
Parametric	COLS	SFA
Non parametric	DEA	

- COLS = Corrected Ordinary Least Squares
- SFA = Stochastic Frontier Analysis
- DEA = Data Envelopment Analysis

Benchmarking with DEA Introduction to DEA Selection of variables Case study Conclusions and future work References	
Frontier Models	

	Deterministic	Stochastic
Parametric	COLS	SFA
Non parametric	DEA	SDEA

Clasification

- COLS = Corrected Ordinary Least Squares
- SFA = Stochastic Frontier Analysis
- DEA = Data Envelopment Analysis
- SDEA = Stochastic Data Envelopment Analysis

Frontier models Adventages and disadventages

> Non parametric: They are more flexible and do not need parameter estimation

Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses

Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses
- Stochastic: They handle better the noise in data

Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses
- Stochastic: They handle better the noise in data

 $\not \Longrightarrow \mathsf{SDEA}?$

Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses
- Stochastic: They handle better the noise in data

 $\not \Longrightarrow \mathsf{SDEA}?$

• Requires strong distributional hypotheses
Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses
- Stochastic: They handle better the noise in data

 $\not \Longrightarrow \mathsf{SDEA}?$

- Requires strong distributional hypotheses
- Estimation of the involved processes is expensive

Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses
- Stochastic: They handle better the noise in data

 $\not \Longrightarrow \mathsf{SDEA}?$

- Requires strong distributional hypotheses
- Estimation of the involved processes is expensive
- Requires large data sets

Frontier models Adventages and disadventages

- Non parametric: They are more flexible and do not need parameter estimation
- Deterministic: They do not require distributional hypotheses
- Stochastic: They handle better the noise in data

 $\not \Longrightarrow \mathsf{SDEA}?$

- Requires strong distributional hypotheses
- Estimation of the involved processes is expensive
- Requires large data sets

DEA and SFA are useful models and have many adventages over classical models

Technology: Given by data

D

ata on milk product	ion on	livesto	ck farms
		COWS	milk
	1	121	862.53
	2	80	605.76
	3	95	865.66
	4	87	662.33
	5	125	1003.44
	6	135	923.51
	7	87	563.68
	8	171	1247.31
	9	165	992.73
	10	154	1209.69

Introduction to DEA Selection of variables Case study Conclusions and future work References

Technologic frontier

Introduction to DEA Selection of variables Case study Conclusions and future work References

Technology: free disposal hull (fdh)

Introduction to DEA Selection of variables Case study Conclusions and future work References

Technology: constant return to scale (crs)

Introduction to DEA Selection of variables Case study Conclusions and future work References

Frontier: crs technology

Introduction to DEA Selection of variables Case study Conclusions and future work References

Tecnology: increasing return to scale (irs)

Introduction to DEA Selection of variables Case study Conclusions and future work References

Frontier: irs technology

Introduction to DEA Selection of variables Case study Conclusions and future work References

Tecnology: decreasing return to scale (drs)

Introduction to DEA Selection of variables Case study Conclusions and future work References

Frontier: drs tecnology

Eficiency

	cows	milk
1	121	862.53
9	165	992.73
10	154	1209.69

- Farm 10 dominates to Farm 9
- Farms 1 and 9 do not dominate each other
- Farms 1 and 10 do not dominate each other

Definition

The non dominated units are said to be efficient in the sense of Pareto or in the sense of Koopmans.

Remark

Efficient units are solutions to weighted problems and "reciprocally".

Introduction to DEA Selection of variables Case study Conclusions and future work References

Technology dominance

Introduction to DEA Selection of variables Case study Conclusions and future work References

Efficiency score: crs model

Introduction to DEA Selection of variables Case study Conclusions and future work References

Efficiency score: crs model

	COWS	milk	potencial	rate
1	121	862.53	1102.57	1.28
2	80	605.76	728.98	1.20
3	95	865.66	865.66	1.00
4	87	662.33	792.76	1.20
5	125	1003.44	1139.02	1.14
6	135	923.51	1230.15	1.33
7	87	563.68	792.76	1.41
8	171	1247.31	1558.18	1.25
9	165	992.73	1503.51	1.51
10	154	1209.69	1403.28	1.16

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Definitions and DEA elements

DEA = Data Envelopment Analysis

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Definitions and DEA elements

 $\mathsf{DEA} = \mathsf{Data}$ Envelopment Analysis

Elements:

inputs

* Image from wikimedia

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Definitions and DEA elements

 $\mathsf{DEA}=\mathsf{Data}\ \mathsf{Envelopment}\ \mathsf{Analysis}$

Elements:

- inputs
- outputs

* Image from wikimedia

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Definitions and DEA elements

 $\mathsf{DEA}=\mathsf{Data}\ \mathsf{Envelopment}\ \mathsf{Analysis}$

Elements:

- inputs
- outputs
- DMU = Decision making units

* Image from wikimedia

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Definitions and DEA elements

DEA = Data Envelopment Analysis

Elements:

- inputs
- outputs
- DMU = Decision making units

* Image from wikimedia

The goal: Get the maximum amount of outputs using the minimum amount of the inputs.

M. Muñoz-Márquez

Benchmarking with DEA

DEA elements **Objectives and methodology of the DEA** Notation and formulation Example

Objetives of DEA

- Identify the efficient DMUs
- Q Get a rank of DMUs according to their efficiencies
- Obtain the way that each DMU can be improve

DEA elements **Objectives and methodology of the DEA** Notation and formulation Example

DEA Methodology

Two convergent approaches:

O Efficiency as a ration between outputs and inputs

M. Muñoz-Márquez Benchmarking with DEA

DEA elements **Objectives and methodology of the DEA** Notation and formulation Example

DEA Methodology

Two convergent approaches:

- O Efficiency as a ration between outputs and inputs
- Ø Efficiency is equivalent to scalar problems

DEA elements **Objectives and methodology of the DEA** Notation and formulation Example

DEA Methodology

Two convergent approaches:

- I Efficiency as a ration between outputs and inputs
- **2** Efficiency is equivalent to scalar problems

Score: Provides a score for each DMU.

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Notation

- Inputs: x_{id} is the amount of input *i* used by DMU *d*.
- Outputs: y_{od} is the amount of output o produced by DMU d.

• Score:
$$s(d) = \frac{\sum_{o=1}^{n_O} u_{od} y_{od}}{\sum_{i=1}^{n_I} v_{id} x_{id}}$$

Where u_{od} is the weight of output o in DMU d and v_{id} is the weight of input i in DMU d.

Remark

The numerator of the previous ratio is called virtual output and virtual input denominator.

DEA elements Objectives and methodology of the DEA Notation and formulation Example

CRS model formulation

The *CRS DEA model oriented to input* considers for each DMU, the following problem:

 $\max \sum_{o=1}^{n_{O}} u_{o} y_{o0}$ s.a $\sum_{i=1}^{n_{I}} v_{i} x_{i0} = 1$ $\sum_{o=1}^{n_{I}} u_{o} y_{od} \leq \sum_{i=1}^{n_{I}} v_{i} x_{id}, \quad \forall d = 1, 2, \dots, n_{D}$ $u_{o}, v_{i} \geq 0, \quad \forall o, \forall i$ (P_{0})

where 0 is the evaluated unit.

DEA elements Objectives and methodology of the DEA Notation and formulation Example

CRS model formulation

The *CRS DEA model oriented to input* considers for each DMU, the following problem:

 $\max \sum_{o=1}^{n_{O}} u_{o} y_{o0}$ s.a $\sum_{i=1}^{n_{I}} v_{i} x_{i0} = 1$ $\sum_{o=1}^{n_{I}} u_{o} y_{od} \leq \sum_{i=1}^{n_{I}} v_{i} x_{id}, \quad \forall d = 1, 2, ..., n_{D}$ $u_{o}, v_{i} \geq 0, \quad \forall o, \forall i$ (P_0)

where 0 is the evaluated unit.

Fix the amount of input to 1.

DEA elements Objectives and methodology of the DEA Notation and formulation Example

CRS model formulation

s.a

The *CRS DEA model oriented to input* considers for each DMU, the following problem:

 $\sum_{\substack{i=1\\n_{O}}}^{n_{I}} v_{i} x_{i0} = 1$ $\sum_{\substack{i=1\\n_{O}}}^{n_{I}} u_{o} y_{od} \leq \sum_{\substack{i=1\\i=1\\u_{O}}}^{n_{I}} v_{i} x_{id}, \quad \forall d = 1, 2, \dots, n_{D}$ $u_{o}, v_{i} \geq 0, \quad \forall o, \forall i$ (P₀)

where 0 is the evaluated unit.

max $\sum^{v} u_o y_{o0}$

The score of each DMU must be under 1.

DEA elements Objectives and methodology of the DEA Notation and formulation Example

Example

We consider a set of libraries in Tokyo ("Data Envelopment Analysis", Cooper, Seiford and Tone), in which 23 DMUs with 4 inputs and 2 outputs are considered.

- These data appertain to public libraries located in 23 districts of the metropolitan area of Tokyo.
- As inputs we have: area, number of books, staff and population
- As outputs: number of people registered and books borrowed http://knuth.uca.es/shiny/DEA

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

The selection problem

What happens if one drops population variable?

library	score4	rank4	score3	rank3
17	1.00	20.50	1.00	22.00
19	1.00	20.50	1.00	22.00
23	1.00	20.50	1.00	22.00
5	1.00	20.50	0.91	20.00
9	1.00	20.50	0.91	19.00
20	0.85	17.00	0.85	18.00
15	0.84	16.00	0.84	17.00
21	0.79	14.00	0.79	16.00

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

The selection problem

What happens if one drops population variable?

library	score4	rank4	score3	rank3
17	1.00	20.50	1.00	22.00
19	1.00	20.50	1.00	22.00
23	1.00	20.50	1.00	22.00
5	1.00	20.50	0.91	20.00
9	1.00	20.50	0.91	19.00
20	0.85	17.00	0.85	18.00
15	0.84	16.00	0.84	17.00
21	0.79	14.00	0.79	16.00

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

Significance measures

A significance measure has been defined in "Stepwise selection of variables in DEA using contribution loads". *Fernando Fernandez-Palacin, Maria Auxiliadora Lopez-Sanchez, M. Munoz-Marquez.* Pesquisa Operacional, 38:1, pg. 31-52. 2018, DOI: 10.1590/0101-7438.2018.038.01.0031.

Adventages

- The significance measure is objective
- It allows an automatic algorithm for variable selection
- It allows to compare diferent models

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

Global Model

$$\begin{array}{ll} \max & \sum_{d=1}^{n_D} \sum_{o=1}^{n_O} u_{od} y_{od} \\ \text{s.a} \\ & \sum_{\substack{i=1\\n_O}}^{n_I} v_{id} x_{id} = 1, \quad \forall d = 1, 2, \dots, n_D \\ & \sum_{\substack{o=1\\n_O}}^{n_I} u_{oe} y_{od} \leq \sum_{\substack{i=1\\i=1\\u_{od}, v_{id} \geq 0, \quad \forall o, \forall i, \forall d}}^{n_I} \quad \forall e = 1, \dots, n_D, \forall d = 1, \dots, n_D \end{array}$$

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

$\bar{\alpha}$ -ratios definition

For a set of inputs x and outputs y, u and v feasible weights for the global model, let:

$$\bar{\alpha}_{i}^{I} = \bar{\alpha}_{i}^{I}(u, v) = \frac{\sum_{i=1}^{n_{D}} v_{id} x_{id}}{\sum_{i=1}^{n_{I}} \sum_{d=1}^{n_{D}} v_{id} x_{id}} \quad \text{para} \quad i = 1, 2, \dots, n_{I}$$

$$\bar{\alpha}_{o}^{O} = \bar{\alpha}_{o}^{O}(u, v) = \frac{\sum_{i=1}^{d=1} u_{od} y_{od}}{\sum_{o=1}^{n_{D}} \sum_{d=1}^{n_{D}} u_{od} y_{od}} \quad \text{para} \quad o = 1, 2, \dots, n_{O}$$

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

Properties

$$\sum_{o=1}^{n_l} \bar{\alpha}_i^l = 1 \text{ and } 0 \le \bar{\alpha}_i^l \le 1, \qquad \forall i = 1, 2, \dots, n_l$$
$$\sum_{o=1}^{n_O} \bar{\alpha}_o^O = 1 \text{ and } 0 \le \bar{\alpha}_o^O \le 1, \qquad \forall o = 1, 2, \dots, n_O$$

Standarized definition:

$$\hat{\alpha}_i^I = \hat{\alpha}_i^I(u, v) = n_I \bar{\alpha}_i^I, \quad \forall i = 1, 2, \dots, n_I \\ \hat{\alpha}_o^O = \hat{\alpha}_o^O(u, v) = n_O \bar{\alpha}_o^O, \quad \forall o = 1, 2, \dots, n_O$$
The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

$$\begin{array}{ll} \max & \sum_{d=1}^{n_{D}} \sum_{o=1}^{n_{Q}} u_{od} y_{od} + \epsilon (\hat{\alpha}_{m}^{l} + \hat{\alpha}_{m}^{Q}) \\ \text{s.a} \\ & \sum_{i=1}^{n_{l}} v_{id} x_{id} = 1, \quad \forall d = 1, 2, \ldots, n_{D} \\ & \sum_{o=1}^{n_{l}} u_{oe} y_{od} \leq \sum_{i=1}^{n_{l}} v_{ie} x_{id}, \quad \forall e = 1, \ldots, n_{D}, \forall d = 1, \ldots, n_{D} \\ & \hat{\alpha}_{i}^{l} = \frac{n_{l} \sum_{i=1}^{n_{D}} v_{id} x_{id}}{\sum_{i=1}^{n_{l}} \sum_{d=1}^{n_{l}} v_{id} x_{id}}, \quad \forall i = 1, 2, \ldots, n_{l} \\ & \hat{\alpha}_{o}^{l} = \frac{n_{O} \sum_{i=1}^{n_{D}} u_{od} y_{od}}{\sum_{i=1} \sum_{d=1}^{n_{D}} u_{od} y_{od}}, \quad \forall i = 1, 2, \ldots, n_{O} \\ & \sum_{i=1}^{n_{O}} \sum_{d=1}^{n_{D}} u_{od} y_{od} \\ & 0 \leq \hat{\alpha}_{o}^{l} \leq \hat{\alpha}_{i}^{l}, \quad \forall i = 1, 2, \ldots, n_{I} \\ & 0 \leq \hat{\alpha}_{o}^{l} \leq \hat{\alpha}_{o}^{l}, \quad \forall o = 1, 2, \ldots, n_{O} \\ & u_{od}, v_{id} \geq 0, \quad \forall o, \forall i, \forall d \end{array} \right)$$

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

How to solve?

The problem can be solved in two steps:

- In the first step, P is solved and we get the scores.
- In the second step, the maximum value of α̂-ratios are computed taking the scores from the first step as constraints.

$$\max_{s,a} \alpha^{I} + \alpha^{O}$$

$$\sum_{i=1}^{n_{I}} v_{id} x_{id} = 1, \quad \forall d = 1, 2, \dots, n_{D}$$

$$\sum_{\substack{o=1\\n_{O}}}^{n_{I}} u_{od} y_{od} \leq \sum_{i=1}^{n_{I}} v_{i} x_{id}, \quad \forall d = 1, 2, \dots, n_{D}$$

$$\sum_{\substack{o=1\\n_{O}}}^{n_{O}} u_{od} y_{od} = s(d), \quad \forall d = 1, 2, \dots, n_{D}$$

$$0 \leq \alpha^{I} \leq \alpha_{i}^{I} = \frac{n_{I}}{n_{D}} \sum_{\substack{d=1\\n_{D}}}^{n_{D}} v_{id} x_{id}, \quad \forall i = 1, 2, \dots, n_{I}$$

$$0 \leq \alpha^{O} \leq \alpha_{o}^{O} = \frac{n_{O} \sum_{\substack{d=1\\n_{D}}}^{n_{D}} u_{od} y_{od}}{\sum_{\substack{s \in A}} s(d)}, \quad \forall i = 1, 2, \dots, n_{O}$$

M. Muñoz-Márquez

The selection problem Significance measures Global model $\bar{\alpha}$ -ratios or loads

Example of loads computation

The computed loads are:

Inputs

	Area	Books	Staff	Populations
First step	0.0553	1.4541	1.2858	1.2048
Second step	0.4011	1.3372	0.9922	1.2695

Outputs

	Regist	Borrow
First step	0.7924	1.2076
Second step	1.0000	1.0000

Selecting variables in Tokyo data

We consider three models:

- M1= Model with 4 inputs and 2 outputs
- M2= Model with 3 inputs and 2 outputs. The input "Area" has been dropped out
- M3= Model with 2 inputs and 2 outputs. The input "Books" has also dropped out

M1 vs M2 scores

S1

M1 vs M2 scores

The load "Area" are low, 0.4011, and one can see little changes in

M. Muñoz-Márquez

M1 vs M3 scores

S1

M1 vs M3 scores

The load of "Books" are high, 1.3372, and one can see higher

M. Muñoz-Márquez Benchma

Changes in scores

	Maximum	Average
$\frac{ S1-S2 }{S1}$	0.034	0.002
$\frac{ S1-S3 }{S1}$	0.112	0.025

- The significance measures introduced consistently measure the contribution of each input and each output to the total measure of efficiency.
- **2** These measures verify all the desirable properties for them.
- On automatic procedure of selection of inputs and outputs variables has been established.

- Ontinue the development of the software
- 2 Make a full computational study (in progress)
- Extend the results to other DEA models

References

- A. Charnes, W. W. Cooper, and E. Rhodes.
 Measuring the efficiency of decision making units.
 European Journal of Operational Research, 2(6):429–444, 1978.
- William W. Cooper, Lawrence M Seiford, and Kaoru Tone. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References, and DEA-Solver Software. Kluwer Academic, 2000.
- Fernando Fernandez-Palacin, María Auxiliadora Lopez-Sanchez, and Manuel Munoz-Marquez. Stepwise selection of variables in DEA using contribution loads.

Pesquisa Operacional, 38(1):31-52, 2018: -> (B) (E) (E) (E) (E)

M. Muñoz-Márquez

Benchmarking with DEA

Benchmarking with DEA Introduction to Data Envelopment Analysis September 12

Thank you for your attention

M. Muñoz-Márquez manuel.munoz@uca.es

Statistics and Operation Research Department Cadiz University, Spain

200